The focus of this work is the integration of alkali vapor atomic vapor cells into common silicon wafer microfabrication processes. Such integrated platforms enable the study of quantum coherence effects such as electromagnetically induced transparency, which can in turn be used to demonstrate slow light. Slow and stopped light devices have applications in the optical communications and quantum computing fields. This project uses hollow core anti-resonant reflecting optical waveguides (ARROWs) to build such slow light devices. An explanation of light-matter interactions and the physics of slow light is first provided, as well as a detailed overview of the fabrication process. Following the discovery of a vapor transport issue, a custom capillary-based testing platform is developed to quantify the effect of confinement, temperature, and wall coatings on rubidium transport. A mathematical model is derived from the experimental results and predicts long transport times. A new design methodology is presented that addresses the transport problem by increasing the number of rubidium entry points. This design also improves chip durability and decreases environmental susceptibility through the use of a single copper reservoir and buried channel waveguides (BCWs). New chips are successfully fabricated, loaded, and monitored for rubidium spectra. Absorption is observed in several chips and absorption peaks depths in excess of 10% are reported. The chip lifetime remains comparable to previous designs. This new design can be expanded to a multi-core platform suitable for slow and stopped light experimentation.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-6691 |
Date | 01 February 2016 |
Creators | Giraud Carrier, Matthieu C |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0026 seconds