Return to search

Codes, graphs and designs from maximal subgroups of alternating groups

Philosophiae Doctor - PhD (Mathematics) / The main theme of this thesis is the construction of linear codes from adjacency matrices or sub-matrices of adjacency matrices of regular graphs. We first examine the binary codes from the row span of biadjacency matrices and their transposes for some classes of bipartite graphs. In this case we consider a sub-matrix of an adjacency matrix of a graph as the generator of the code. We then shift our attention to uniform subset graphs by exploring the automorphism groups of graph covers and some classes of uniform subset graphs. In the sequel, we explore equal codes from adjacency matrices of non-isomorphic uniform subset graphs and finally consider codes generated by an adjacency matrix formed by adding adjacency matrices of two classes of uniform subset graphs.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/6165
Date January 2018
CreatorsMumba, Nephtale Bvalamanja
ContributorsMwambene, Eric, Fish, Washiela, Rodrigues, Bernardo
PublisherUniversity of the Western Cape
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
RightsUniversity of the Western Cape

Page generated in 0.0017 seconds