• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Codes Related to and Derived from Hamming Graphs

Muthivhi, Thifhelimbilu Ronald January 2013 (has links)
Masters of Science / Codes Related to and Derived from Hamming Graphs T.R Muthivhi M.Sc thesis, Department of Mathematics, University of Western Cape For integers n; k 1; and k n; the graph 􀀀k n has vertices the 2n vectors of Fn2 and adjacency de ned by two vectors being adjacent if they di er in k coordinate positions. In particular, 􀀀1 n is the classical n-cube, usually denoted by H1(n; 2): This study examines the codes (both binary and p-ary for p an odd prime) of the row span of adjacency and incidence matrices of these graphs. We rst examine codes of the adjacency matrices of the n-cube. These have been considered in [14]. We then consider codes generated by both incidence and adjacency matrices of the Hamming graphs H1(n; 3) [12]. We will also consider codes of the line graphs of the n-cube as in [13]. Further, the automorphism groups of the codes, designs and graphs will be examined, highlighting where there is an interplay. Where possible, suitable permutation decoding sets will be given.
2

Codes Related to and Derived from Hamming Graphs

Muthivhi, Thifhelimbilu Ronald January 2013 (has links)
>Magister Scientiae - MSc / For integers n, k 2:: 1, and k ~ n, the graph r~has vertices the 2n vectors of lF2 and adjacency defined by two vectors being adjacent if they differ in k coordinate positions. In particular, r~is the classical n-cube, usually denoted by Hl (n, 2). This study examines the codes (both binary and p-ary for p an odd prime) of the row span of adjacency and incidence matrices of these graphs. We first examine codes of the adjacency matrices of the n-cube. These have been considered in [14]. We then consider codes generated by both incidence and adjacency matrices of the Hamming graphs Hl(n,3) [12]. We will also consider codes of the line graphs of the n-cube as in [13]. Further, the automorphism groups of the codes, designs and graphs will be examined, highlighting where there is an interplay. Where possible, suitable permutation decoding sets will be given.
3

Codes, graphs and designs related to iterated line graphs of complete graphs

Kumwenda, Khumbo January 2011 (has links)
In this thesis, we describe linear codes over prime fields obtained from incidence designs of iterated line graphs of complete graphs Li(Kn) where i = 1, 2. In the binary case, results are extended to codes from neighbourhood designs of the line graphs Li+1(Kn) using certain elementary relations. Codes from incidence designs of complete graphs, Kn, and neighbourhood designs of their line graphs, L1(Kn) (the so-called triangular graphs), have been considered elsewhere by others. We consider codes from incidence designs of L1(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In each case, basic parameters of the codes are determined. Further, we introduce a family of vertex-transitive graphs 􀀀n that are embeddable into the strong product L1(Kn) ⊠ K2, of triangular graphs and K2, a class which at first sight may seem unnatural but, on closer look, is a repository of graphs rich with combinatorial structures. For instance, unlike most regular graphs considered here and elsewhere that only come with incidence and neighbourhood designs, 􀀀n also has what we have termed as 6-cycle designs. These are designs in which the point set contains vertices of the graph and every block contains vertices of a 6-cycle in the graph. Also, binary codes from incidence matrices of these graphs have other minimum words in addition to incidence vectors of the blocks. In addition, these graphs have induced subgraphs isomorphic to the family Hn of complete porcupines (see Definition 4.11). We describe codes from incidence matrices of 􀀀n and Hn and determine their parameters.
4

Codes, graphs and designs related to iterated line graphs of complete graphs

Kumwenda, Khumbo January 2011 (has links)
In this thesis, we describe linear codes over prime fields obtained from incidence designs of iterated line graphs of complete graphs Li(Kn) where i = 1, 2. In the binary case, results are extended to codes from neighbourhood designs of the line graphs Li+1(Kn) using certain elementary relations. Codes from incidence designs of complete graphs, Kn, and neighbourhood designs of their line graphs, L1(Kn) (the so-called triangular graphs), have been considered elsewhere by others. We consider codes from incidence designs of L1(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In each case, basic parameters of the codes are determined. Further, we introduce a family of vertex-transitive graphs 􀀀n that are embeddable into the strong product L1(Kn) ⊠ K2, of triangular graphs and K2, a class which at first sight may seem unnatural but, on closer look, is a repository of graphs rich with combinatorial structures. For instance, unlike most regular graphs considered here and elsewhere that only come with incidence and neighbourhood designs, 􀀀n also has what we have termed as 6-cycle designs. These are designs in which the point set contains vertices of the graph and every block contains vertices of a 6-cycle in the graph. Also, binary codes from incidence matrices of these graphs have other minimum words in addition to incidence vectors of the blocks. In addition, these graphs have induced subgraphs isomorphic to the family Hn of complete porcupines (see Definition 4.11). We describe codes from incidence matrices of 􀀀n and Hn and determine their parameters.
5

Codes, graphs and designs from maximal subgroups of alternating groups

Mumba, Nephtale Bvalamanja January 2018 (has links)
Philosophiae Doctor - PhD (Mathematics) / The main theme of this thesis is the construction of linear codes from adjacency matrices or sub-matrices of adjacency matrices of regular graphs. We first examine the binary codes from the row span of biadjacency matrices and their transposes for some classes of bipartite graphs. In this case we consider a sub-matrix of an adjacency matrix of a graph as the generator of the code. We then shift our attention to uniform subset graphs by exploring the automorphism groups of graph covers and some classes of uniform subset graphs. In the sequel, we explore equal codes from adjacency matrices of non-isomorphic uniform subset graphs and finally consider codes generated by an adjacency matrix formed by adding adjacency matrices of two classes of uniform subset graphs.
6

Codes, graphs and designs related to iterated line graphs of complete graphs

Kumwenda, Khumbo January 2011 (has links)
Philosophiae Doctor - PhD / In this thesis, we describe linear codes over prime fields obtained from incidence designs of iterated line graphs of complete graphs Li(Kn) where i = 1, 2. In the binary case, results are extended to codes from neighbourhood designs of the line graphs Li+1(Kn) using certain elementary relations. Codes from incidence designs of complete graphs, Kn, and neighbourhood designs of their line graphs, L1(Kn) (the so-called triangular graphs), have been considered elsewhere by others. We consider codes from incidence designs of L1(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In each case, basic parameters of the codes are determined. Further, we introduce a family of vertex-transitive graphs Γn that are embeddable into the strong product L1(Kn)⊠  K2, of triangular graphs and K2, a class which at first sight may seem unnatural but, on closer look, is a repository of graphs rich with combinatorial structures. For instance, unlike most regular graphs considered here and elsewhere that only come with incidence and neighbourhood designs, Γn also has what we have termed as 6-cycle designs. These are designs in which the point set contains vertices of the graph and every block contains vertices of a 6-cycle in the graph. Also, binary codes from incidence matrices of these graphs have other minimum words in addition to incidence vectors of the blocks. In addition, these graphs have induced subgraphs isomorphic to the family Hn of complete porcupines (see Definition 4.11). We describe codes from incidence matrices of Γn and Hn and determine their parameters. / South Africa
7

Codes, graphs and designs related to iterated line graphs of complete graphs

Kumwenda, Khumbo January 2011 (has links)
Philosophiae Doctor - PhD / In this thesis, we describe linear codes over prime fields obtained from incidence designs of iterated line graphs of complete graphs Li(Kn) where i = 1,2. In the binary case, results are extended to codes from neighbourhood designs of the line graphs Li+l(Kn) using certain elementary relations. Codes from incidence designs of complete graphs, Kn' and neighbourhood designs of their line graphs, £1(Kn) (the so-called triangular graphs), have been considered elsewhere by others. We consider codes from incidence designs of Ll(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In each case, the basic parameters of the codes are determined. Further, we introduce a family of vertex-transitive graphs Rn that are embeddable into the strong product Ll(Kn) ~ K2' of triangular graphs and K2' a class that at first sight may seem unnatural but, on closer look, is a repository of graphs rich with combinatorial structures. For instance, unlike most regular graphs considered here and elsewhere that only come with incidence and neighbourhood designs, Rn also has what we have termed as 6-cycle designs. These are designs in which the point set contains vertices of the graph and every block contains vertices of a 6-cycle in the graph. Also, binary codes from incidence matrices of these graphs have other minimum words in addition to incidence vectors of the blocks. In addition, these graphs have induced subgraphs isomorphic to the family Hn of complete porcupines (see Definition 4.11). We describe codes from incidence matrices of Rn and Hn and determine their parameters. The discussion is concluded with a look at complements of Rn and Hn, respectively denoted by Rn and Hn. Among others, the complements rn are contained in the union of the categorical product Ll(Kn) x Kn' and the categorical product £1(Kn) x Kn (where £1(Kn) is the complement of the iii triangular graph £1(Kn)). As with the other graphs, we have also considered codes from the span of incidence matrices of Rn and Hn and determined some of their properties. In each case, automorphisms of the graphs, designs and codes have been determined. For the codes from incidence designs of triangular graphs, embeddings of Ll(Kn) x K2 and complements of complete porcupines, we have exhibited permutation decoding sets (PD-sets) for correcting up to terrors where t is the full error-correcting capacity of the codes. For the remaining codes, we have only been able to determine PD-sets for which it is possible to correct a fraction of t-errors (partial permutation decoding). For these codes, we have also determined the number of errors that can be corrected by permutation decoding in the worst-case.

Page generated in 0.1305 seconds