• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 5
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinatorial problems on Abelian Cayley graphs /

Couperus, Peter J., January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (p. 84-85).
2

Meta-Cayley Graphs on Dihedral Groups

Allie, Imran January 2017 (has links)
>Magister Scientiae - MSc / The pursuit of graphs which are vertex-transitive and non-Cayley on groups has been ongoing for some time. There has long been evidence to suggest that such graphs are a very rarety in occurrence. Much success has been had in this regard with various approaches being used. The aim of this thesis is to find such a class of graphs. We will take an algebraic approach. We will define Cayley graphs on loops, these loops necessarily not being groups. Specifically, we will define meta-Cayley graphs, which are vertex-transitive by construction. The loops in question are defined as the semi-direct product of groups, one of the groups being Z₂ consistently, the other being in the class of dihedral groups. In order to prove non-Cayleyness on groups, we will need to fully determine the automorphism groups of these graphs. Determining the automorphism groups is at the crux of the matter. Once these groups are determined, we may then apply Sabidussi's theorem. The theorem states that a graph is Cayley on groups if and only if its automorphism group contains a subgroup which acts regularly on its vertex set. / Chemicals Industries Education and Training Authority (CHIETA)
3

Colouring Cayley Graphs

Chu, Lei January 2005 (has links)
We will discuss three ways to bound the chromatic number on a Cayley graph. 1. If the connection set contains information about a smaller graph, then these two graphs are related. Using this information, we will show that Cayley graphs cannot have chromatic number three. 2. We will prove a general statement that all vertex-transitive maximal triangle-free graphs on <i>n</i> vertices with valency greater than <i>n</i>/3 are 3-colourable. Since Cayley graphs are vertex-transitive, the bound of general graphs also applies to Cayley graphs. 3. Since Cayley graphs for abelian groups arise from vector spaces, we can view the connection set as a set of points in a projective geometry. We will give a characterization of all large complete caps, from which we derive that all maximal triangle-free cubelike graphs on 2<sup>n</sup> vertices and valency greater than 2<sup>n</sup>/4 are either bipartite or 4-colourable.
4

Colouring Cayley Graphs

Chu, Lei January 2005 (has links)
We will discuss three ways to bound the chromatic number on a Cayley graph. 1. If the connection set contains information about a smaller graph, then these two graphs are related. Using this information, we will show that Cayley graphs cannot have chromatic number three. 2. We will prove a general statement that all vertex-transitive maximal triangle-free graphs on <i>n</i> vertices with valency greater than <i>n</i>/3 are 3-colourable. Since Cayley graphs are vertex-transitive, the bound of general graphs also applies to Cayley graphs. 3. Since Cayley graphs for abelian groups arise from vector spaces, we can view the connection set as a set of points in a projective geometry. We will give a characterization of all large complete caps, from which we derive that all maximal triangle-free cubelike graphs on 2<sup>n</sup> vertices and valency greater than 2<sup>n</sup>/4 are either bipartite or 4-colourable.
5

Acyclic colourings of planar graphs

Raubenheimer, Fredrika Susanna 20 August 2012 (has links)
M.Sc. / Within the field of Graph Theory the many ways in which graphs can be coloured have received a lot of attention over the years. T.R. Jensen and B. Toft provided a summary in [8] of the most important results and research done in this field. These results were cited by R. Diestel in [5] as “The Four Colour Problem” wherein it is attempted to colour every map with four colours in such a way that adjacent countries will be assigned different colours. This was first noted as a problem by Francis Guthrie in 1852 and later, in 1878, by Cayley who presented it to the London Mathematical Society. In 1879 Kempe published a proof, but it was incorrect and lead to the adjustment by Heawood in 1890 to prove the five colour theorem. In 1977 Appel and Haken were the first to publish a solution for the four colour problem in [2] of which the proof was mostly based on work done by Birkhoff and Heesch. The proof is done in two steps that can be described as follows: firstly it is shown that every triangulation contains at least one of 1482 certain “unavoidable configurations” and secondly, by using a computer, it is shown that each of these configurations is “reducible”. In this context the term “reducible” is used in the sense that any plane triangulation containing such a configuration is 4-colourable by piecing together 4- colourings of smaller plane triangulations. These two steps resulted in an inductive proof that all plane triangulations and therefore all planar graphs are 4-colourable.
6

Graph automatic semigroups

Carey, Rachael Marie January 2016 (has links)
In this thesis we examine properties and constructions of graph automatic semigroups, a generalisation of both automatic semigroups and finitely generated FA-presentable semigroups. We consider the properties of graph automatic semigroups, showing that they are independent of the choice of generating set, have decidable word problem, and that if we have a graph automatic structure for a semigroup then we can find one with uniqueness. Semigroup constructions and their effect on graph automaticity are considered. We show that finitely generated direct products, free products, finitely generated Rees matrix semigroup constructions, zero unions, and ordinal sums all preserve unary graph automaticity, and examine when the converse also holds. We also demonstrate situations where semidirect products, Bruck-Reilly extensions, and semilattice constructions preserve graph automaticity, and consider the conditions we may impose on such constructions in order to ensure that graph automaticity is preserved. Unary graph automatic semigroups, that is semigroups which have graph automatic structures over a single letter alphabet, are also examined. We consider the form of an automaton recognising multiplication by generators in such a semigroup, and use this to demonstrate various properties of unary graph automatic semigroups. We show that infinite periodic semigroups are not unary graph automatic, and show that we may always find a uniform set of normal forms for a unary graph automatic semigroup. We also determine some necessary conditions for a semigroup to be unary graph automatic, and use this to provide examples of semigroups which are not unary graph automatic. Finally we consider semigroup constructions for unary graph automatic semigroups. We show that the free product of two semigroups is unary graph automatic if and only if both semigroups are trivial; that direct products do not always preserve unary graph automaticity; and that Bruck-Reilly extensions are never unary graph automatic.
7

Dots and lines : geometric semigroup theory and finite presentability

Awang, Jennifer S. January 2015 (has links)
Geometric semigroup theory means different things to different people, but it is agreed that it involves associating a geometric structure to a semigroup and deducing properties of the semigroup based on that structure. One such property is finite presentability. In geometric group theory, the geometric structure of choice is the Cayley graph of the group. It is known that in group theory finite presentability is an invariant under quasi-isometry of Cayley graphs. We choose to associate a metric space to a semigroup based on a Cayley graph of that semigroup. This metric space is constructed by removing directions, multiple edges and loops from the Cayley graph. We call this a skeleton of the semigroup. We show that finite presentability of certain types of direct products, completely (0-)simple, and Clifford semigroups is preserved under isomorphism of skeletons. A major tool employed in this is the Švarc-Milnor Lemma. We present an example that shows that in general, finite presentability is not an invariant property under isomorphism of skeletons of semigroups, and in fact is not an invariant property under quasi-isometry of Cayley graphs for semigroups. We give several skeletons and describe fully the semigroups that can be associated to these.
8

Enumeration, isomorphism and Hamiltonicity of Cayley graphs: 2-generated and cubic

Effler, Scott 25 November 2008 (has links)
This thesis explores 2-generated and cubic Cayley graphs. All 2-generated Cayley graphs with generators from Sn where n < 9, were generated. Further, 3-generated cubic Cayley graphs, where n < 7, were also generated. Among these, the cubic Cayley graphs with up to 40320 vertices were tested for various properties including Hamiltonicity and diameter. These results are available on the internet in easy to read tables. The motivation for the testing of Cayley graphs for Hamiltonicity was the conjecture that states that every connected Cayley graph is Hamiltonian. New enumeration results are presented for various classes of 2-generated Cayley graphs. Previously known enumeration results are presented for cubic Cayley graphs.Finally, isomorphism and color isomorphism of 2-generated and cubic Cay­ley graphs is explored. Numerous new results are presented. All algorithms used in this thesis are explained in full.
9

Essential spanning forests and electric networks in groups /

Solomyak, Margarita. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [51]-52).
10

On the Erdős-Sòs conjecture and the Cayley Isomorphism Problem

Balasubramanian, Suman, January 2009 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Mathematics and Statistics. / Title from title screen. Includes bibliographical references.

Page generated in 0.0398 seconds