• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Meta-Cayley Graphs on Dihedral Groups

Allie, Imran January 2017 (has links)
>Magister Scientiae - MSc / The pursuit of graphs which are vertex-transitive and non-Cayley on groups has been ongoing for some time. There has long been evidence to suggest that such graphs are a very rarety in occurrence. Much success has been had in this regard with various approaches being used. The aim of this thesis is to find such a class of graphs. We will take an algebraic approach. We will define Cayley graphs on loops, these loops necessarily not being groups. Specifically, we will define meta-Cayley graphs, which are vertex-transitive by construction. The loops in question are defined as the semi-direct product of groups, one of the groups being Z₂ consistently, the other being in the class of dihedral groups. In order to prove non-Cayleyness on groups, we will need to fully determine the automorphism groups of these graphs. Determining the automorphism groups is at the crux of the matter. Once these groups are determined, we may then apply Sabidussi's theorem. The theorem states that a graph is Cayley on groups if and only if its automorphism group contains a subgroup which acts regularly on its vertex set. / Chemicals Industries Education and Training Authority (CHIETA)
2

The Eulerian Functions of Cyclic Groups, Dihedral Groups, and P-Groups

Sewell, Cynthia M. (Cynthia Marie) 08 1900 (has links)
In 1935, Philip Hall developed a formula for finding the number of ways of generating the group of symmetries of the icosahedron from a given number of its elements. In doing so, he defined a generalized Eulerian function. This thesis uses Hall's generalized Eulerian function to calculate generalized Eulerian functions for specific groups, namely: cyclic groups, dihedral groups, and p- groups.
3

A probabilistic approach to a classical result of ore

Muhie, Seid Kassaw 31 August 2021 (has links)
The subgroup commutativity degree sd(G) of a finite group G was introduced almost ten years ago and deals with the number of commuting subgroups in the subgroups lattice L(G) of G. The extremal case sd(G) = 1 detects a class of groups classified by Iwasawa in 1941 (in fact sd(G) represents a probabilistic measure which allows us to understand how far is G from the groups of Iwasawa). Among them we have sd(G) = 1 when L(G) is distributive, that is, when G is cyclic. The characterization of a cyclic group by the distributivity of its lattice of subgroups is due to a classical result of Ore in 1938. Therefore sd(G) is strongly related to structural properties of L(G). Here we introduce a new notion of probability gsd(G) in which two arbitrary sublattices S(G) and T(G) of L(G) are involved simultaneously. In case S(G) = T(G) = L(G), we find exactly sd(G). Upper and lower bounds in terms of gsd(G) and sd(G) are among our main contributions, when the condition S(G) = T(G) = L(G) is removed. Then we investigate the problem of counting the pairs of commuting subgroups via an appropriate graph. Looking at the literature, we noted that a similar problem motivated the permutability graph of non–normal subgroups ΓN (G) in 1995, that is, the graph where all proper non– normal subgroups of G form the vertex set of ΓN (G) and two vertices H and K are joined if HK = KH. The graph ΓN (G) has been recently generalized via the notion of permutability graph of subgroups Γ(G), extending the vertex set to all proper subgroups of G and keeping the same criterion to join two vertices. We use gsd(G), in order to introduce the non–permutability graph of subgroups ΓL(G) ; its vertices are now given by the set L(G) − CL(G)(L(G)), where CL(G)(L(G)) is the smallest sublattice of L(G) containing all permutable subgroups of G, and we join two vertices H, K of ΓL(G) if HK 6= KH. We finally study some classical invariants for ΓL(G) and find numerical relations between the number of edges of ΓL(G) and gsd(G).
4

Orders of Perfect Groups with Dihedral Involution Centralizers

Strayer, Michael Christopher 23 May 2013 (has links)
No description available.
5

Terwilliger Algebras for Several Finite Groups

Bastian, Nicholas Lee 22 March 2021 (has links)
In this thesis, we will explore the structure of Terwilliger algebras over several different types of finite groups. We will begin by discussing what a Schur ring is, as well as providing many different results and examples of them. Following our discussion on Schur rings, we will move onto discussing association schemes as well as their properties. In particular, we will show every Schur ring gives rise to an association scheme. We will then define a Terwilliger algebra for any finite set, as well as discuss basic properties that hold for all Terwilliger algebras. After specializing to the case of Terwilliger algebras resulting from the orbits of a group, we will explore bounds of the dimension of such a Terwilliger algebra. We will also discuss the Wedderburn decomposition of a Terwilliger algebra resulting from the conjugacy classes of a group for any finite abelian group and any dihedral group.

Page generated in 0.0287 seconds