Return to search

Condições suficientes de otimalidade para o problema de controle de sistemas lineares estocásticos / Sufficient optimality conditions for the control problem of linear stochastic systems

Orientador: João Bosco Ribeiro do Val / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-20T16:10:11Z (GMT). No. of bitstreams: 1
Madeira_DiegodeSousa_M.pdf: 382775 bytes, checksum: d75575b4a57a5bb98739210edef9b5c7 (MD5)
Previous issue date: 2012 / Resumo: As principais contribuições deste trabalho são a obtenção de condições necessárias e suficientes de otimalidade para o problema de controle de sistemas lineares determinísticos discretos e para certas classes de sistemas lineares estocásticos. Adotamos o método de controle por realimentação de saída, um horizonte de controle finito e um funcional de custo quadrático nas variáveis de estado e de controle. O problema determinístico é solucionado por completo, ou seja, provamos que para qualquer sistema MIMO as condições necessárias de otimalidade são também suficientes. Para tanto, uma versão do Princípio do Máximo Discreto é utilizada. Além disso, analisamos o caso estocástico com ruído aditivo e provamos que o princípio do máximo discreto fornece as condições necessárias de otimalidade para o problema, embora não garanta suficiência. Por fim, em um cenário particular com apenas dois estágios, empregamos uma técnica de parametrização do funcional de custo associado ao sistema linear estocástico com ruído aditivo e provamos que, no caso dos sistemas SISO com matrizes C (saída) e B (entrada) tais que CB = 0, as condições necessárias de otimalidade são também suficientes. Provamos que o mesmo também é válido para a classe dos Sistemas Lineares com Saltos Markovianos (SLSM), no contexto especificado. Com o objetivo de ilustrar numericamente os resultados teóricos obtidos, alguns exemplos numéricos são fornecidos / Abstract: The main contributions of this work are that the necessary and sufficient optimality conditions for the control problem of discrete linear deterministic systems and some classes of linear stochastic systems are obtained. We adopted the output feedback control method, a finite horizon control and a cost function that is quadratic in the state and control vectors. The deterministic problem is completely solved, that is, we prove that for any MIMO system the necessary optimality conditions are also sufficient. To do so, a formulation of the Discrete Maximum Principle is used. Furthermore, we analyze the stochastic case with additive noise and prove that the discrete maximum principle provides the necessary optimality conditions, though they are not sufficient. Finally, in a particular two-stage scenario, we apply a parametrization technique of the cost function associated with the linear stochastic system with additive noise and prove that, for SISO systems with orthogonal matrices C (output) and B (input) so that CB = 0, the necessary optimality conditions are sufficient too. We prove that under the underlined context the previous statement is also valid in the case of the Markov Jump Linear Systems (MJLS). In order to illustrate the theoretical results obtained, some numerical examples are given / Mestrado / Automação / Mestre em Engenharia Elétrica

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/259266
Date20 August 2018
CreatorsMadeira, Diego de Sousa
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Val, João Bosco Ribeiro do, 1955-, Fragoso, Marcelo Dutra, Ferreira, Paulo Augusto Valente
Publisher[s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format65 f. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds