Return to search

NEGATIVE REGULATION OF REGULATORY T CELLS BY MYELOID-DERIVED SUPPRESSOR CELLS IN CANCER

Myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) play an essential role in the immunosuppressive networks that contribute to tumor immune evasion. The mechanisms by which tumors promote the expansion and/or function of these suppressive cells and the cross-regulation between MDSC and Treg remain incompletely defined. The current work evaluates the influence of MDSC, expanded in two mouse cancer models, on immunosuppressive Treg. We demonstrate that tumor-induced MDSC endowed with the potential of suppressing conventional T lymphocytes surprisingly impair TGF-β1-mediated generation of induced Treg (iTreg) from naïve CD4⁺ T lymphocytes. Suppression of iTreg generation by MDSC occurs early in the differentiation process, and is cell contact dependent. This inhibition of FoxP3-expressing T lymphocyte differentiation by MDSC does not depend on arginase 1, cystine/cysteine depletion, iNOS/NO, or PD-1/PD-L1 signaling. These findings therefore indicate that MDSC from tumor-bearing hosts have the heretofore unreported ability to restrict some immunosuppressive Treg subpopulations.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/145099
Date January 2011
CreatorsCentuori, Sara Mozelle
ContributorsKatsanis, Emmanuel, Larmonier, Nicolas, Lybarger, Lonnie, Doetschman, Tom, Briehl, Margaret, Bowden, Tim
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Dissertation, text
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0016 seconds