Return to search

Complexity and expressiveness for formal structures in Natural Language Processing

The formalized and algorithmic study of human language within the field of Natural Language Processing (NLP) has motivated much theoretical work in the related field of formal languages, in particular the subfields of grammar and automata theory. Motivated and informed by NLP, the papers in this thesis explore the connections between expressibility – that is, the ability for a formal system to define complex sets of objects – and algorithmic complexity – that is, the varying amount of effort required to analyse and utilise such systems. Our research studies formal systems working not just on strings, but on more complex structures such as trees and graphs, in particular syntax trees and semantic graphs. The field of mildly context-sensitive languages concerns attempts to find a useful class of formal languages between the context-free and context-sensitive. We study formalisms defining two candidates for this class; tree-adjoining languages and the languages defined by linear context-free rewriting systems. For the former, we specifically investigate the tree languages, and define a subclass and tree automaton with linear parsing complexity. For the latter, we use the framework of parameterized complexity theory to investigate more deeply the related parsing problems, as well as the connections between various formalisms defining the class. The field of semantic modelling aims towards formally and accurately modelling not only the syntax of natural language statements, but also the meaning. In particular, recent work in semantic graphs motivates our study of graph grammars and graph parsing. To the best of our knowledge, the formalism presented in Paper III of this thesis is the first graph grammar where the uniform parsing problem has polynomial parsing complexity, even for input graphs of unbounded node degree.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-135014
Date January 2017
CreatorsEricson, Petter
PublisherUmeå universitet, Institutionen för datavetenskap, Umeå : Umeå Universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationReport / UMINF, 0348-0542 ; 17.13

Page generated in 0.0119 seconds