Les accumulateurs Ni-MH (Nickel-Métal-Hydrure) sont un sujet prometteur et largement étudié dans les recherches d’une énergie propre et durable. Trouver le matériau idéal pour l'électrode négative à haute densité volumétrique et gravimétrique est la clé pour l’application de cette technologie. Les hydrures métalliques à base de Ti-Ni ont des propriétés équilibrées entre la capacité d’hydrogène et les performances électrochimiques.L’objectif de cette thèse est d’étudier les effets de substitutions/additions d’éléments et de la mécanosynthèse sur la structure et les propriétés d’hydrogène des alliages Ti-Ni. Dans cette étude, une série d’alliages à base de Ti-Ni avec des substitutions/additions de Mg ou de Zr ont été systématiquement étudiés.Les alliages (TiNi)1-xMgx, (TiH2)1.5Mg0.5Ni, and Ti2-xZrxNi ont été synthétisés par mécanosynthèse à partir de poudres élémentaires. Dans un premier temps, l’influence du temps de broyage et les effets de substitutions/additions sur les microstructures ont été caractérisés par des techniques telles que la DRX, le MEB et le MET. Dans un second temps, les propriétés d’hydrogénation des différents alliages ont été mesurées par des réactions solid-gaz et par cyclage électrochimique.La théorie de la fonctionnelle de la densité (DFT) en utilisant le programme CASTEP a permis de calculer les enthalpies de formation afin de comparer la stabilité thermodynamique des alliages obtenus. Dans ces travaux de recherche, nous avons identifié les priorités d’alliage des ternaires Ni-Ti-Mg et Ti-Ni-Zr dans des conditions de broyage. La transformation structurale du Ti en phase CFC, induite par l’introduction d’éléments étrangers, a été mise en évidence.Les courbes PCI (Pression-Composition-Isothermes) et les capacités de décharge en fonction du nombre de cycles indiquent les propriétés d’hydrogène des alliages obtenus, y compris TiNi, Ti2Ni (amorphe), Ti-Mg et Ti-Zr. / Ni-MH (Nickel-Metal-Hydride) batteries have been a promising and extensively studied topic among clean and sustainable energy researches. Finding the ideal material for the negative electrode with high volumetric and gravimetric densities is the key to apply this technology on broader applications. Metal hydrides based on Ti-Ni have balanced properties between hydrogen capacity and electrochemical performances in cycling.The objective of this thesis is to study the effects of element substitution/doping and mechanical alloying on the structural and hydrogen properties of Ti-Ni alloys. In this study, a series of Ti-Ni based systems with Mg or Zr doping/substitution have been systematically investigated.The metallic compounds (TiNi)1-xMgx, (TiH2)1.5Mg0.5Ni, and Ti2-xZrxNi were synthesized by mechanically alloying from elemental powders.The milling time and effects of Mg, Zr substitution/doping were studied firstly in respect of their microstructures, using characterization techniques including XRD, SEM, TEM (EDX support), followed by the hydrogen properties measurements of the samples by hydrogen solid-gas reaction and electrochemical cycling.A first principle calculation tool based on DFT (Density Functional Theory) was carried out to further investigate the enthalpy of formation in order to compare the thermodynamical stability of the obtained compounds. In the study, we have found the alloying priorities in the ternary alloys Ti-Ni-Mg and Ti-Ni-Zr under milling conditions.A structure transformation of Ti to FCC induced by foreign elements is reported and investigated. Enthalpy of formation per atom of the compounds were obtained by DFT calculations, which helped interpreting the experimental results. PCI (Pressure Composition Isotherms) curves and discharge capacities as the function of cycling numbers revealed the hydrogen properties of the obtained compounds, including TiNi, Ti2Ni (amorphous), Ti-Mg and Ti-Zr.
Identifer | oai:union.ndltd.org:theses.fr/2015BELF0256 |
Date | 09 February 2015 |
Creators | Li, Xianda |
Contributors | Belfort-Montbéliard, El-Kedim, Omar |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0013 seconds