Mechanical Alloying is a manufacturing process that produces alloys by cold welding of powders. Usually, a vial containing both the powder and steel balls is agitated. Due to impact between the balls and balls and the vial, the powder is mechanically deformed, crushed, and mixed at nano-scales. In this thesis, a numerical model is developed to simulate the dynamics of the vial and the grinding balls of the SPEX 8000 ball milling device, a standardized equipment in both industrial and academic investigations of ball milling. The numerical model is based on the Event Driven Method, typically used to model granular flows. The method implemented is more efficient than the discrete element method used previously to study ball milling dynamics. The numerical tool obtained is useful for scale-up and optimization of mechanical alloying of various materials. An optimization study is presented for the SPEX 8000.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/20458 |
Date | 30 November 2011 |
Creators | Barahona, Javier |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.0015 seconds