Return to search

Quantum mechanical modelling and electrochemical stability of sodium based glassy electrolyte for all-solid-state batteries

Increasing energy demand draws attention to new materials for improving current energy storage technologies. Particular interest is directed at solid state batteries and glass Na3ClO electrolyte is a promising candidate. In this report we explore some of the properties of this new glass and its capabilities as a potential electrolyte for a solid-state battery. The two aims of the study were to model the amorphous structure of the glass using the stochastic quenching method based on density functional theory as well as assessing the electrochemical stability of it against a metallic sodium electrode. Using VASP, a computational code based on density functional theory, we performed calculations of two 150 atom supercells, where the atoms were moved around until the systems were relaxed to obtain two glass models and the resulting structures were analyzed and characterized. The characterization of the structures was made by means of partial radial distribution functions, angle distribution functions, coordination numbers and bond lengths, which showed that the two models are statistically equivalent and either one can be used for the stability assessment of the glass. The electrochemical stability was assessed by inserting an extra sodium atom in possible holes in the glass model and calculating the energetics of Na insertion in each of these holes. This was made for 30 different hole positions. The reduction potential indicates the stability of each hole and the results was plotted as an energy distribution. Two peaks in the energy distribution, located at positive and negative energies, indicating stable and unstable holes, respectively. This indicates that the amorphous structure of the glass allows Na ions to travel (unstable holes). The stable peak has a greater probability density, which indicates a stable electrolyte against sodium metal electrode, though a larger sampling of holes is required for better statistics. / Ökande krav på energiefterfrågan uppmärksammar nya material för att förbättra nuvarande energilagringsteknik, med fokus på solida batterier och glaset Na3ClO som en lovande kandidat för elektrolyt. I denna rapport undersöks några av egenskaperna för glaset samt möjligheten för denna att fungera som elektrolyt i ett solid-state batteri. Målen med projektet var att modellera den amorfa strukturen av glaset genom att använda stochastic quenching method som baseras på density functional theory samt undersöka den elektrokemiska stabiliteten mot en metallisk natrium elektrod. Genom användning av VASP, beräkningskoder baserade på density functional theroy, beräknades två superceller med 150 atomer vardera där atomerna flyttas runt tills dess att systemet var relaxerat och två modeller av glaset erhölls. Dessa var sedan visualiserades och karakteriserade. Karakterisering av strukturerna gjordes genom en partiella radiella fördelningsfunktioner, vinkel distrubitionsfunktioner, koordinationsnummer och bindningslängder. Detta visade på statistisk ekvivalens, vilket innebär att båda modellerna kan användas för vidare stabilitetsundersökning. Den elektrokemiska stabiliteten undersöktes genom att sätta in en extra natrium atom i möjliga hål i glas modellen samt beräkna dess energier av Na insättning i respektive hål. Detta gjordes för 30 olika positioner för hålen. Reduktionspotentialen indikerar stabiliteten för respektive hål, och resultatet plottades som en energidistribution. Två toppar i energidistributionen, lokaliserade vid positiva och negativa energier, indikerar stabila respeltive instabila hål. Detta indikerar på att den amorfa strukturen för glaset tillåter Na joner att färdas (instabila hål). Den stabila toppen har en större sannolikhetstäthet vilket indikerar på en stabil elektrolyt mot en metallisk natrium elektrod, men en större samling hål krävs för en bättre statistisk säkerhet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-315011
Date January 2022
CreatorsFalk, Carolina, Johansson, Linnéa
PublisherKTH, Materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2022:235

Page generated in 0.0031 seconds