Die multimediale Aufbereitung von Lerninhalten zu E-Learning Einheiten ist heute in der Aus- und Weiterbildung allgegenwärtig. Häufig wird dabei jedoch die Perspektive der Nutzer der virtuellen Lehr-/Lernsysteme vernachlässigt [1]. In der Regel erfolgt eine standardisierte Aufbereitung der Lerninhalte, welche während der Konzeptionsphase die späteren Konsumenten der E-Learning Einheiten weitestgehend außer Acht lässt. Entsprechend werden meistens weder die Potenziale zur Kostenersparnis durch Teilstandardisierung von Weiterbildungsmodulen noch zur Qualitätssteigerung durch verstärkte Individualisierung annähernd ausgeschöpft. [2] Dabei bleiben individuellen Lernpräferenzen der Teilnehmer unberücksichtigt und Potenziale zur Verbesserung der Lernergebnisse werden nicht genutzt. Um diese Lücke zu schließen, wird basierend auf der Theorie der neurolinguistischen Programmierung ein Online-Werkzeug entwickelt, welches die zur Informationsaufnahme präferierten Sinneskanäle der einzelnen Teilnehmer analysiert und auswertet. Mit diesem Wissen kann die zukünftige Entwicklung und Aufbereitung von E-Learning Inhalten individueller auf die jeweiligen Konsumenten zugeschnitten werden. Zusätzlich soll das Online-Werkzeug den Nutzern Empfehlungen geben, wie sie ihren Lernerfolg verbessern können.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:27239 |
Date | January 2013 |
Creators | Wortmann, Frank, Frießem, Martina, Zülch, Joachim |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Source | T. Köhler & N. Kahnwald (Hrsg.), Online Communities: Enterprise Networks, Open Education and Global Communication: 16. Workshop GeNeMe ’13 Gemeinschaften in Neuen Medien, Dresden: TUDpress, ISBN: 978-3-944331-24-9, S. 263-271 |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa-125446, qucosa:26164 |
Page generated in 0.0021 seconds