O principal objetivo deste trabalho é desenvolver procedimentos inferências em uma perspectiva bayesiana para modelos de sobrevivência com (ou sem) fração de cura baseada na distribuição exponencial por partes. A metodologia bayesiana é baseada em métodos de Monte Carlo via Cadeias de Markov (MCMC). Para detectar observações influentes nos modelos considerados foi usado o método bayesiano de análise de influência caso a caso (Cho et al., 2009), baseados na divergência de Kullback-Leibler. Além disso, propomos o modelo destrutivo binomial negativo com fração de cura. O modelo proposto é mais geral que os modelos de sobrevivência com fração de cura, já que permitem estimar a probabilidade do número de causas que não foram eliminadas por um tratamento inicial / The main objective is to develop procedures inferences in a bayesian perspective for survival models with (or without) the cure rate based on piecewise exponential distribution. The methodology is based on bayesian methods for Markov Chain Monte Carlo (MCMC). To detect influential observations in the models considering bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence (Cho et al., 2009). Furthermore, we propose the negative binomial model destructive cure rate. The proposed model is more general than the survival models with cure rate, since the probability to estimate the number of cases which were not eliminated by an initial treatment
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-09062011-151222 |
Date | 31 March 2011 |
Creators | Alessandra Cristiane Sibim |
Contributors | Vicente Garibay Cancho, Heleno Bolfarine, Francisco Louzada Neto |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds