Return to search

Développement de matériaux électriquement conducteurs pour les plaques bipolaires de piles à combustibles à membrane échangeuse de protons, PEMFC

Dans un contexte de changements climatiques palpables, la recherche dans le domaine des énergies ± propres ¿ devient de plus en plus valorisée. La technologie des piles à combustibles en est une voie qui intéresse les chercheurs autant que les décideurs. Pour cause, leur utilisation à grande échelle est potentiellement capable de défaire la dépendance aux combustibles fossiles. Ces derniers sont en effet accusés de dérégler l'équilibre climatique, mais aussi de créer des tensions internationales. La ± pile à combustible à membrane échangeuse de protons ¿, ou PEMFC pour ± Proton Exchange Membrane Fuel Cell ¿, est une catégorie de piles à combustibles prometteuse, surtout pour les applications mobiles et de transport. Les PEMFC sont des appareils capables de convertir une énergie stockée chimiquement en courant électrique durant des milliers d'heures. La chaîne de réactions qui le permet est respectueuse de l'environnement : son seul rejet dans l'atmosphère est de la vapeur d'eau. Une PEMFC est composée de plusieurs unités qui produisent un courant électrique continu. Les plaques bipolaires ou BPP, abréviation anglaise de ±BiPolar Plates¿ constituent les extrémités de chaque unité. Elles ont pour rôle principal d'assurer le passage des électrons entre les unités adjacentes et de distribuer l'hydrogène ou l'oxygène de façon homogène sur toute la surface des électrodes de chaque unité. Cette dernière étape est assurée grâce à des chemins de circulation de gaz gravés sur chaque face de la BPP. Il existe cependant un frein au développement de cette technologie; son coût. En effet, celui-ci reste encore élevé et empêche les fabricants d'y associer un avantage concurrentiel substantiel. Pourtant, la concrétisation de l'avenir prometteur des PEMFC passe indéniablement par une industrialisation et leur intégration dans des produits compétitifs. La présente étude concerne le développement de nouveaux matériaux pour l'un des éléments les plus massifs ± plaques bipolaires ¿. Pour réduire les coûts, un travail de recherche dans ce domaine peut explorer deux voies: trouver des matériaux alternatifs moins onéreux ou bien, innover dans la fabrication et la mise en oeuvre. Dans ce projet, les deux démarches ont été explorées. Le milieu intérieur d'une PEMFC est relativement chaud, corrosif et possède une pression spécifique. La conception des BPP doit donc tenir compte de plusieurs paramètres. Le produit doit non seulement répondre aux exigences de conductivité électrique, mais aussi de résistances chimique, thermique et mécanique. Établir un compromis entre les propriétés finales s'avère donc nécessaire, en particulier lorsque celles-ci varient de manière opposée. Traditionnellement fabriquées en graphite, les BPP sont les éléments les plus massifs et les plus coûteux dans une PEMFC. Le but de ce projet est de développer, via un procédé de mise en oeuvre viable industriellement, un matériau léger constitué d'un polymère thermoplastique chargé d'additifs solides, électriquement conducteurs. En plasturgie, la mise en oeuvre de matériaux par un processus continu est le meilleur moyen qui permet d'accéder éventuellement à une production industrielle. Dans cette étude, le procédé d'extrusion a été utilisé. Celui-ci a permis de produire en continu des surfaces plates à épaisseurs contrôlées. Pour fabriquer une BPP à base de matériaux polymères, il est possible d'associer le procédé d'extrusion à des étapes de calandrage, de découpe et de compression à chaud. La phase de compression permet alors de graver les chemins de circulation des gaz sur chaque face de la BPP. Dans cette étude, une filière plate montée sur une extrudeuse bi-vis contra-rotatives a été utilisée pour produire des feuilles d'épaisseur 2.5 mm. Les mélanges étaient formés d'une matrice Polyéthylène Téréphtalate, PET, et de plusieurs charges électriques. Ces additifs ont été choisis en fonction de leurs dimensions, de leurs formes et de leurs conductivités électriques. La combinaison de plusieurs charges visait à obtenir un effet synergétique. Deux charges ont été systématiquement utilisées: un noir de carbone à surface spécifique élevée et un graphite synthétique en forme de feuillets. Deux autres charges ont aussi été séparément testées pour examiner leurs effets sur la conductivité électrique. Il s'agit de nanotubes de carbone et de billes de verre enduites d'une mince couche d'argent. Plusieurs propriétés ont été caractérisées pour faire une comparaison avec les valeurs visées pour une BPP. Il s'agit principalement de la conductivité électrique, de la résistance mécanique, ainsi que de la perméabilité au gaz. Des observations au microscope électronique ont par ailleurs permis d'expliquer certains phénomènes électriques. Des résultats encourageants ont été obtenus grâce à la combinaison de charges.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/20176
Date13 April 2018
CreatorsBouatia Eloumami, Souhail
ContributorsMighri, Frej, Bousmina, Mostapha Mosto
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Formatxi, 79 f., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0023 seconds