Return to search

Fabrication of Lab-Scale Polymeric and Silicon Dioxide Nanoparticle-Enabled Thin Film Composite Reverse Osmosis Membranes for Potable Reuse Applications

Reverse osmosis (RO) is widely used for water reclamation and is one of the most feasible technologies for addressing water scarcity around the world. RO membrane fabrication procedures are continually being optimized and modified to enhance the treatment performance and efficacy of the RO process. A review of the existing literature published on membrane fabrication revealed that a detailed and reproducible methodology consistent among prior studies was not available. Therefore, the primary objective of this study was to utilize techniques from prior research to develop a reliable lab-scale membrane fabrication process for studying the potable reuse applications of TFC RO membranes.
Phase inversion was used to create a polysulfone (PSF) support layer on a non-woven fabric sheet. Then, the process of interfacial polymerization (IP) between amine and acyl chloride monomers was utilized to form a highly selective and ultrathin polyamide (PA) layer on the PSF support surface. The resulting membrane composition and performance was dependent on a wide range of parameters during the fabrication process. The optimal support materials, reactant types and concentration, and reaction conditions were determined through trial and error. The best performing membranes utilized N-methyl-2-pyrrolidone (NMP) as the solvent, Novatexx-2471 non-woven fabric for mechanical support, and 15 wt% PSF concentration for phase inversion. The optimal immersion duration was five minutes for the aqueous amine monomer solution during the IP process. The flux for membrane triplicates was 20.2  3.6 liters per square meter per hour (LMH) while the salt rejection was 96.8  2.0%. The relatively low standard deviation for flux and salt rejection indicates that the fabrication method developed herein is consistent. A commercial Dow Filmtec BW30 flat sheet PA-TFC RO membrane was tested for comparison and exhibited a flux of 44.9 LMH and a salt rejection of 98.5%. Thus, the membranes developed in this study achieved salt rejection on par with commercial membranes but exhibited a flux that was significantly lower.
Furthermore, this study investigated modifications to the traditional TFC membrane using engineered silica nanomaterials with the goal of enhancing the membrane flux while maintaining high salt rejection. Two types of nonporous silicon dioxide nanoparticles (SDNPs), non-functionalized and amine functionalized, were dispersed in the aqueous and organic IP solutions. Ultrasonication of the non-functionalized SDNPs in the aqueous solution was observed to produce the most stable dispersion. Compared to the unmodified TFC membranes, the average flux of the SDNP-modified (TFC-NP) RO membrane triplicates was higher at 25.4  2.0 LMH with 0.1% (w/v) SDNPs incorporated in the PA layer. The salt rejection was lowered to 92.3  0.1% for the TFC-NP membranes.
In addition, the membranes fabricated in this study were characterized using scanning electron microscopy (SEM), Fourier Transport Infrared Spectroscopy (FTIR), atomic force microscopy (AFM), and goniometry measurements. SEM images showed that the TFC-NP membranes contained larger spaces between ridges and valleys of the PA pore structure. FTIR confirmed the PA layer formation on the membranes fabricated herein but a spectral peak from the SDNPs was not observed for the TFC-NP membranes. AFM measurements indicated an increase in surface roughness of the modified membranes, likely because of the incorporation of SDNPs. The surface of TFC-NP membranes was found to be more hydrophilic than the unmodified TFC membranes based on contact angle measurements. Further optimization of the fabrication method developed herein is warranted before pursuing additional RO research topics, such as the disinfection byproduct precursor removal of TFC membranes.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4144
Date01 August 2022
CreatorsDinh, Timothy J
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0018 seconds