Kinks are functionally important structural features found in the alpha-helices of many proteins, particularly membrane proteins. Structurally, they are points at which a helix abruptly changes direction. Previous kink definition and identification methods often disagree with one another. Here I describe three novel methods to characterise kinks, which improve on existing approaches. First, Kink Finder, a computational method that consistently locates kinks and estimates the error in the kink angle. Second the B statistic, a statistically robust method for identifying kinks. Third, Alpha Helices Assessed by Humans, a crowdsourcing approach that provided a gold-standard data set on which to train and compare existing kink identification methods. In this thesis, I show that kinks are a feature of long -helices in both soluble and membrane proteins, rather than just transmembrane -helices. Characteristics of kinks in the two types of proteins are similar, with Proline being the dominant feature in both types of protein. In soluble proteins, kinked helices also have a clear structural preference in that they typically point into the solvent. I also explored the conservation of kinks in homologous proteins. I found examples of conserved and non-conserved kinks in both the helix pairs and the helix families. Helix pairs with non-conserved kinks generally have less similar sequences than helix pairs with conserved kinks. I identified helix families that show highly conserved kinks, and families that contain non-conserved kinks, suggesting that some kinks may be flexible points in protein structures.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:655081 |
Date | January 2014 |
Creators | Wilman, Henry R. |
Contributors | Deane, Charlotte M.; Shi, Jiye |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:21225f0e-efed-49c6-af27-5d3fe78fa731 |
Page generated in 0.0019 seconds