Return to search

Evolution des conditions d’écoulement du magma et du dégazage dans les conduits éruptifs des volcans andésitiques : apports de la modélisation numérique / Evolution of magma flow and degassing conditions in the upper conduit at andesitic volcanoes : insights from numerical modelling

L'activité des volcans andésitiques, tels que le Mont St Helens (États-Unis), Montserrat (Antilles) ou encore le Merapi (Indonésie), alterne entre des périodes relativement calmes, avec coulées de lave et formation d'un dôme, et des événements explosifs parfois très violents. Prévoir les transitions entre ces deux régimes est essentiel pour assurer la sécurité des populations voisines, mais demeure actuellement un vrai défi. Or les données expérimentales et les observations de terrain montrent que l'explosivité du magma est étroitement liée à son contenu en gaz. L'objectif de cette thèse est d'améliorer notre compréhension de l'évolution de ce contenu en gaz et de son influence sur l'activité volcanique, en nous appuyant sur des simulations numériques, l'analyse de données expérimentales ainsi que sur l'interprétation de données de déformation enregistrées au Merapi.Une part importante de ce travail réside dans le développement et l'amélioration de modèles d'écoulement en 2D pour prendre en compte le dégazage dans la partie supérieure du conduit, en régime transitoire. Nous présentons un modèle d'écoulement du gaz en temps qui tient compte des pertes en gaz aux bords du conduit et à sa sortie, selon les conditions présentes dans la roche encaissante et le dôme. Nous proposons également une adaptation des modèles de conduit permettant de coupler complètement l'écoulement du gaz avec celui du magma pour étudier l'évolution des conditions dans le conduit en régime transitoire. À partir de simulations de l'évolution du dégazage lors de l'emplacement d'un dôme, nous identifions les para-mètres contrôlant les pertes en gaz. Nos résultats montrent que ces pertes sont extrêmement sensibles à l'évolution de la perméabilité du magma et des gradients de pression autour du conduit en réponse au poids du dôme. La perméabilité du dôme a quant à elle peu d'influence. Au cours de la croissance du dôme, les pertes en gaz diminuent en profondeur. En haut du conduit, la pression du gaz augmente de quelques dizaines de MPa. Ces effets sont associés à une augmentation de l'explosivité du magma et de l'aléa volcanique en cas d'effondrement du dôme.Bien que la perméabilité du magma exerce un fort contrôle sur la perte de gaz, comme l'ont montré nos résultats, son évolution dans le conduit est peu contrainte. Les lois de perméabilité utilisées actuellement ne sont pas en accord avec l'ensemble des mesures réalisées sur des échantillons de magmas riches en silice. Dans le but d'améliorer notre compréhension du développement de la perméabilité dans le conduit, nous avons cherché à éclaircir le lien entre perméabilité, conditions d'écoulements, et caractéristiques géométriques du réseau de bulles connectées. Nous proposons une formulation du seuil de percolation, moment exact où le magma devient perméable compatible avec un grand nombre d'échantillons naturels et expérimentaux. Nous présentons aussi une nouvelle loi de perméabilité en accord avec la plupart des observations existantes, que nous avons intégrée à notre modèle 2D de dégazage. Nos résultats montrent qu'en fonction du nombre de bulles dans le magma et de la distribution de leurs tailles, l'importance des pertes en gaz et par conséquent les conditions d'écoulement dans le conduit varient d'effusives à explosives.Enfin, afin d'évaluer l'utilité des données de déformation pour suivre l'évolution des conditions d'écoulement, nous utilisons des modèles d'écoulement simples couplés à de la déformation élastique en 3D pour retrouver la déformation observée au sommet du Merapi peu avant l'éruption de 2006. Bien que ces modèles permettent de mieux comprendre les déplacements observés, le peu de données, associé à la complexité géologique et rhéologique du sommet, ainsi qu'à celle des processus physiques intervenant dans le conduit font qu'il est difficile de contraindre les conditions d'écoulement grâce à la déformation dans ce cas précis. / At silicic volcanoes, such as Mount St Helens (United States), Montserrat (British West Indies), or Merapi (Indonesia), periods of relative quiescence, with lava flows and dome emplacement, alternate with explosive, sometimes very violent events. Forecasting the effusive/explosive transitions, which is essential for the safety of nearby populations, remains currently a real challenge. However, experimental as well as field observations provide evidence that magma gas content is a major clue for understanding explosivity. This thesis, based on numerical simulations, experimental samples analysis, as well as on the interpretation of ground deformation data recorded at Merapi volcano, aims at improving our understanding of gas loss evolution, and its impact on the eruptive regime.A major part of this work consisted in developing and improving 2D axisymmetric conduit flow models for integrating gas loss in transient conditions. We provide a time-dependent model for gas flow in the upper conduit, that accounts for gas loss both at the conduit walls and at its top, depending on conditions in the surrounding rock and dome. We also propose an adaptation of conduit flow models allowing for full coupling between magma and gas flow in 2D that should be used to further investigate flow conditions evolution during transient regimes. From time-dependent gas flow simulations in the case of an effusive dome emplacement, we identify controlling parameters for gas loss. Our results provide evidence that gas loss is extremely sensitive to the evolution of magma permeability and of pressure gradients around the conduit due to dome loading, whereas, contrary to the common idea, dome permeability has almost no influence. Along with dome growth, gas loss decreases at depth, thus causing an increase in the magma gas content. At the top of the conduit, this results in an increase in gas pressure by a few tens of MPa, thus increasing the likelihood of magma explosivity and hazard in the case of a rapid decompression due to dome collapse.Although magma permeability plays a major role for gas extraction, as revealed by our results, its evolution within the conduit is poorly constrained. Currently used permeability laws fail in reassembling the whole dataset of permeability measurements from natural and experimental silicic samples. In order to improve our understanding of permeability development in the conduit, we worked on linking permeability and flow conditions with geometrical parameters that characterise the connected bubble network, based on experimental samples analysis. We propose an expression for the percolation threshold, i.e. the very moment when magma becomes permeable, that succeeds in classifying a wide dataset of natural and experimental samples. We also develop a new permeability law that reassembles most of the existing observations, and implement it within our gas flow 2D model. Results show that depending on the number of bubbles within the magma and on their size distribution, gas loss and then magma flow conditions evolve from effusive to explosive conditions.Eventually, we evaluate the applicability of monitoring flow conditions from observed ground deformation by using simplified conduit flow models, coupled with elastic deformation in 3D, to interpret ground deformation recorded in the near field at Merapi a few days before the 2006 eruption. Although conduit flow models provide important clues for interpreting observed displacements, the sparsity of field observations together with the complexity of the volcano summit geology, rheology and processes happening in the conduit make it very complex to constrain flow conditions from observed deformation.

Identiferoai:union.ndltd.org:theses.fr/2017GREAU008
Date09 May 2017
CreatorsChevalier, Laure
ContributorsGrenoble Alpes, Pinel, Virginie, Collombet, Marielle
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds