Return to search

Cartilage Tissue Engineering Using Mesenchymal Stem Cells : development of a screening method by flow cytometry to characterize diverse sources of human mesenchymal stem cells and to evaluate the quality of their chondrogenic conversion / Ingénierie tissulaire du cartilage avec des cellules souches mésenchymateuses : développement d'une méthode de screening par cytométrie en flux pour caractériser diverses sources de cellules souches mésenchymateuses et évaluer la qualité de leur conversion chondrogénique

. / Articular cartilage is made up of dense, connective tissue localized at the junction of several locations in the skeleton. It covers the surface of the joints to ensure that bones can move. It is an avascular tissue that is not innervated and is composed primarily of a single cell type, the chondrocyte, which synthesizes an abundant extracellular matrix (ECM). Osteoarthritis (OA), a degenerative disease of articular cartilage, is characterized by the degradation of the ECM, associated with increased secretion of matrix metalloproteinases (MMPs) and aggrecanases. In addition, the OA process induces chondrocyte dedifferentiation characterized at least in part by increased synthesis of type I collagen, an atypical isoform in articular cartilage. Moreover, due to the poor intrinsic healing capacity of articular cartilage, there is currently no treatment to restore the chondrocyte phenotype and, in the most advanced stages of OA, the joint must be replaced with a prosthesis, requiring surgery. Therefore, various drug and surgical treatments have been developed in an attempt to prevent the destruction of cartilage which, in light of their relative success, then lead to new, improved therapeutic strategies. One of the most promising approaches is the cartilage tissue engineering based on the procedure described by Brittberg using autologous chondrocyte implantation (ACI). Applied in the earliest stages of OA or chondral lesions, ACI is based on the use of chondrocytes from a healthy, non-bearing region of the diseased joint. The cells are then amplified in monolayer culture and then re-implanted in the lesion. However, amplification of autologous chondrocytes in two-dimensional culture mimics, at least in part, some of the characteristics of the OA process and is accompanied by cell dedifferentiation leading to the formation of nonfunctional fibrocartilage. The numerous pharmaceutical approaches and surgical techniques developed to repair cartilage lesions have revealed their limitations. Ideally, traumatic cartilage lesions should be treated earlier to prevent OA and postpone prosthetic surgery. In the interest of preventing OA, cartilage cell therapy has proven to be a pivotal approach for repairing damaged tissue. Cell therapy consists not only in filling the cartilage lesion with healthy chondrocytes, but also in reconstituting the structure, the physico-chemical properties and the functionality of the hyaline matrix. The transplantation of autologous chondrocytes is the foundation of cell therapy and cartilage tissue engineering and there have been several generations of ACI, each improving on the previous one. However, even the most recent ACI techniques are showing limitations and consequently, research efforts are now focused on improving this technique in order to obtain, after amplification, a differentiated and stable chondrocyte phenotype. This is to be achieved by using new types of biomaterials that can fill more important lesions, molecules and growth factors to better control the chondrogenic differentiation and more suitable cell sources that avoid morbidity at the donor site as it is the case with articular chondrocytes. Today, MSCs hold much promise for biomedical research because they are able to recapitulate many tissues, including cartilage. However, for future advances in the field of regeneration and tissue engineering it is important to know the exact nature of these cells. With this goal, in this work, we first fully characterized 4 categories of serum free amplified mesenchymal stem cells extracted from adipose tissue (AT), bone marrow (BM), dental pulp (DP) and Wharton’s jelly (WJ) of the umbilical cord. The cells were characterized in terms of efficiency of isolation, amplification kinetics and according to an extensive immunophenotyping using flow cytometry... [etc]

Identiferoai:union.ndltd.org:theses.fr/2015LYO10186
Date28 October 2015
CreatorsFabre, Hugo
ContributorsLyon 1, Mallein-Gérin, Frédéric
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds