This thesis explores the application of Radial Basis Functions (RBFs) to fluid dynamical problems. In particular, stationary Stokes and Navier-Stokes equations are solved using RBF collocation method. An existing approach from the literature, is enchanced by an additional polynomial basis and a new preconditioner. A faster method based on the partition of unity is introduced for stationary Stokes equations. Finally, a global method based on Picard linearization is introduced for stationary Navier-Stokes equations. / Denna avhandling utforskar tillämpningen av Radial Basis Functions (RBF) på dynamiska problem med vätskor. I synnerhet löses stationära Stokes och Navier-Stokes ekvationer lösas med hjälp av RBF-samlokaliseringsmetoden. En befintlig metod från litteraturen, förbättras genom en ytterligare polynombas och en ny förkonditionering. En snabbare metod baserad på enhetens partition introduceras för stationära Stokes-ekvationer. Slutligen introduceras en global metod baserad på Picard linjärisering för stationära Navier-Stokes ekvationer.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-345175 |
Date | January 2023 |
Creators | Yelnyk, Volodymyr |
Publisher | KTH, Matematik (Inst.) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2023:464 |
Page generated in 0.002 seconds