Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-01-03T12:20:02Z
No. of bitstreams: 1
2015 - Tain? Dias Valente.pdf: 2209049 bytes, checksum: 5c25bcd5878b607ea484c8dbccb59903 (MD5) / Made available in DSpace on 2017-01-03T12:20:02Z (GMT). No. of bitstreams: 1
2015 - Tain? Dias Valente.pdf: 2209049 bytes, checksum: 5c25bcd5878b607ea484c8dbccb59903 (MD5)
Previous issue date: 2015-12-17 / In the present dissertation it was conducted the study of the synthesis of mesoporous molecular sieve Al-SBA-15 by direct synthesis in agitated reactor having the following molar ratio: 14 SiO2: 1 Al2O3: 0.235 P123: 1800 H2O. Initially, a study was done to optimize the synthesis of Al-SBA-15. Through this study, it was found that the operating conditions that resulted in the SBA-15 sample with a higher degree of ordering were gel aging time equal to 15 hours at 40 ? C and then at 100 ? C for 8 hours. These optimal conditions were used to perform scaling up to 5 gallon reactor. Samples of Al-SBA-15 were subjected to carbonization in order to fill the pores of SBA-15 with carbonaceous material and prevent the collapse of its structure. The carbonized samples were used as a source of silica for the synthesis of mordenite in dry medium using the transmission technique in the vapor phase (VPT). The purpose of this procedure was to obtain the mordenite having mesopores. For the preparation of the mordenite by VPT, several conditions were used, varying the synthesis time and form of addition of the reactants, presence or absence of an organic driver. The samples were characterized by X-ray and nitrogen adsorption. It was observed that in most of the experiments, there was no formation of mordenite phase. In the experiments in this phase was obtained, there was no significant mesoporosity training. Apparently, the presence of carbonaceous material was not sufficient to preserve the mesoporous structure of SBA-15.
Key / No presente trabalho foi realizado o estudo da s?ntese da peneira molecular mesoporosa Al-SBA-15 a partir da s?ntese direta em reator agitado apresentando a seguinte propor??o molar: 14 SiO2: 1 Al2O3: 0,235 P123: 1800 H2O. Inicialmente, foi feito um estudo visando otimizar a s?ntese da Al-SBA-15. Atrav?s deste estudo, foi verificado que as condi??es operacionais que resultaram na amostra de SBA-15 com maior grau de ordenamento foram com tempo de envelhecimento do gel de s?ntese igual a 15 horas a 40?C e depois a 100?C por 8 horas. Estas condi??es otimizadas foram utilizadas para efetuar o aumento de escala para o reator de 5 gal?es. As amostras de Al-SBA-15 foram submetidas a carboniza??o com o objetivo de preencher os poros da SBA-15 com material carbon?ceo e evitar o colapso de sua estrutura. As amostras carbonizadas foram utilizadas como fonte de s?lica para a s?ntese da mordenita em meio seco utilizando a t?cnica de transporte em fase vapor (VPT). O objetivo deste procedimento foi a obten??o de mordenita tendo mesoporos. Para o preparo da mordenita por VPT, v?rias condi??es foram utilizadas, variando o tempo de s?ntese e forma de adi??o dos reagentes, presen?a ou aus?ncia de um direcionador org?nico. As amostras obtidas foram caracterizadas por difra??o de raios X e adsor??o de nitrog?nio. Foi observado que na maioria dos experimentos n?o houve a forma??o da fase mordenita. Nos experimentos em que esta fase foi obtida, n?o foi observada forma??o de mesoporosidade significativa. Aparentemente, a presen?a de material carbon?ceo n?o foi suficiente para preservar a estrutura mesoporosa da SBA-15.
Palavras chave:
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:jspui/1352 |
Date | 17 December 2015 |
Creators | Valente, Tain? Dias |
Contributors | Fernandes, Lindoval Domiciano, Fraga, Marco Andr?, Mota, Izabel de Oliveira |
Publisher | Universidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Engenharia Qu?mica, UFRRJ, Brasil, Instituto de Tecnologia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ |
Rights | info:eu-repo/semantics/openAccess |
Relation | 6. BIBLIOGRAFIA ALTHOFF, R.; UNGER, K.; SCHUTH, F., Is the formation of a zeolite from a dry powder via a gas phase transport possible?, Microporous Materials, v. 2, p. 557-562, 1994. ARA?JO, N. F., Estudo das vari?veis operacionais na s?ntese da peneira molecular mesoporosa Al-SBA-15, Disserta??o (Mestrado em ci?ncias), Instituto de Tecnologia, Departamento de Engenharia Qu?mica, Universidade Federal Rural do Rio Janeiro, 2013. BAJPAI, P. K., Synthesis of mordenite type zeolite, Zeolites, v. 6, p.2-8, 1986. BOVERI, M., et al., Steam and acid dealumination of mordenite Characterization and influence on the catalytic performance in linear alkylbenzene synthesis, Catalysis Today, v. 114, p. 217?225, 2006. BRAGA, A. A. C.; MORGON, N. H., Descri??es estruturais cristalinas de ze?litos. Qu?mica Nova, v. 30, p. 178-188, 2007. BRECK, D. W., Zeolite Molecular Sieves, Wiley, Nova Iorque, 1974. BUSACCA, C. A. et al., The growing impact of catalysis in the pharmaceutical industry, Advanced Synthesis and Catalysis, v. 353, p. 1825, 2011. CHRISTENSEN, C. H. et al., Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites, Catalysis Today, v. 128, p. 117?122, 2007. CORIOLANO, A. C. F. et al., Development of HZSM-5/AlMCM-41 hybrid micro?mesoporous material and application for pyrolysis of vacuum gasoil, Microporous and Mesoporous Materials, v. 172, p. 206?212, 2013. CUNDY, C. S., Synthesis of zeolites and zeotypes, Studies in Surface Science and Catalysis v. 157, 2005. WILLIAMS, D. B.; CARTER, C. B., Transmission Electron Microscopy. A Text Book for Materials Science, Plenum Press, New York, 1996. DRAGOI, B. et al., Acidic and adsorptive properties of Al modified SBA-15 samples, Zeolites and Related Materials: Trends, Targets and Challenges Proceedings of 4th International FEZA Conference, 2008. DUPONT, J., A CAT?LISE NO BRASIL NOS ?LTIMOS 25 ANOS: UMA HIST?RIA DE SUCESSO, Qu?mica Nova, v. 25, Supl. 1, p. 12-13, 2002. FECHETE, I.; WANGB Y.; V?DRINE, J. C., The past, present and future of heterogeneous catalysis, Catalysis Today, v. 189, p. 2? 27, 2012. Disserta??o Tain? Dias Valente - 2015 P?gina 72 FIGUEIREDO, J. I.; RIBEIRO, F. R. (1989). Cat?lise Heterog?nea. Lisboa: Funda??o Calouste Gulbenkian. FOGLER, H. S. (2002). Elementos de Engenharia das Rea??es Qu?micas. Ed. Livros T?cnicos e Cient?ficos, Rio de Janeiro, RJ. Traduzido por Fl?vio Faria de Moraes e Luismar Marques Porto, da 3a ed. em ingl?s (1999) Elements of Chemical Reaction. GALAMEAU A. et al., SBA-15 versus MCM-41: are they the same materiais?, Nanoporous Materials III, v. 141, p. 395?402, 2002. GALLETI, S. R., Palestra Introdu??o a microscopia eletr?nica, Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal, Biol?gico, v.65, p.33-35, 2003. GROEN, J. C. et al., Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions, Journal of Catalysis, v. 251, p. 21-27, 2007. HE, J. et al., Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption, Microporous and Mesoporous Materials, v. 121, p. 173?177, 2009. SILVA, B. S.; RODRIGUES J. A. J.; NONO M. C. A., Caracteriza??o de materiais catal?ticos, Tese de doutorado, INPE, 2008. JOO, S. H.; JUN, S.; RYOO, R., Synthesis of ordered mesoporous carbon molecular sieves CMK-1, Microporous and Mesoporous Materials, v. 44, p. 153-158, 2001. JUN, S. et al., Synthesis of new nanoporous carbon with hexagonally ordered mesostructure, Journal of the American Chemical Society, v. 122, p. 10712?3, 2000. KARLSSON, A.; STOCKER, M.; SCHAFER, K., Enhanced Hydrothermal Stability obtained for in situ Synthesized Micro-and Mesoporous MFI / MCM-41 like Phases, Porous Materials in Environmentally Friendly Processes, v. 125, p. 61-67, 1999. KIM, J.; LEE, J.; HYEON, T., Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites, Carbon, v. 42, p. 2711?2719, 2004. KIM, M.; LI, H.; DAVIS, M. E., Synthesis of zeolites by water-organic vapor-phase transport, Microporous Materials, v. 1, p. 191-200, 1993. KLIMOVA, T. et al., Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization: effect of support Si/Al ratio, Applied Catalysis, v. 335, p. 159?171, 2008. LI, H. et al., Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: Effect of SiO2/Al2O3 ratio in H-ZSM-5, Applied Catalysis A: General, v. 450, p. 152? 159, 2013. LI, X.; PRINS, R.; BOKHOVEN, J. A., Synthesis and characterization of mesoporous mordenite, Journal of Catalysis, v. 262, p. 257-265, 2009. Disserta??o Tain? Dias Valente - 2015 P?gina 73 LI, Q. et al., Highly hydrothermal stability of ordered mesoporous aluminosilicates Al-SBA-15 with high Si/Al ratio, Microporous and Mesoporous Materials, v. 135, p. 95?104, 2010. LIANG, X. et al., Synthesis and characterization of mesoporous Mn/Al-SBA-15 and its catalytic activity for NO reduction with ammonia, Catalysis Communications, v. 8, p. 1901?1904, 2007. LIMA, L. A.; NOGUEIRA, A. C.; RODRIGUES, M. G. F., S?ntese e caracteriza??o da Peneira molecular SBA-15 sintetizada a partir da casca de arroz, UFCG/CCT/UAEQ/LABNOV, Campina Grande - Para?ba, Brasil, 2012. L?PEZ-SANZ, J. et al., New inorganic?organic hybrid materials based on SBA-15 molecular sieves involved in the quinolines synthesis, Catalysis Today, v. 187, p. 97? 103, 2012. MATSUKATA, M. et al., Conversion of dry gel to microporous crystals in gas phase, Topics in Catalysis, v. 9, p. 77-92, 1999. MCNAUGHT, A. D.; WILKINSON, A., IUPAC Compendium of Chemical Terminology, 2nd edition, British Royal Society of Chemistry, Cambridge, UK, 1997. MENG, X.; NAWAZ, F.; XIAO, F., Templating route for synthesizing mesoporous zeolites with improved catalytic properties, Nano Today, v. 4, p. 292-301, 2009. MORSLI, A. et al., Microporosity of the amorphous aluminosilicate precursors of zeolites: The case of the gels of synthesis of mordenite, Microporous and Mesoporous Materials, v. 104, p. 209?216, 2007. MORTIER, W. M.; PLUTH, J. J.; SMITH, J. V., Positions of cations and molecules in zeolites with the mordenit-type framework. IV. Dehydrated and rehydrated K-exchanged ?ptilolite?. In: Sand L.B., Mumpton F.A. (eds.) Natural Zeolites: occurremce, properties, use. New York, Pergamon Press, p.53-62, 1978. NARAYANAN, S. et al., Characterization and catalytic reactivity of mordenite ? Investigation of selective oxidation of benzyl alcohol, Polyhedron, v. 89, p. 289?296, 2015. OGURA, M., et al., Preparation of zeolitic mesoporous aluminosilicate by vapor phase transport method, Studies in Surface and Catalysis, v. 158, p. 493-500, 2005. OGURA, M., et al., Formation of ZMM-n: The composite materials having both natures of zeolites and mesoporous silica materials, Microporous and Mesoporous Materials, v.101, p. 224?230, 2007. OGURA, M., et al., A mechanistic study on the synthesis of MCM-22 from SBA-15 by dry gel conversion to form a micro- and mesoporous composite, Catalysis Today, v. 168, p. 118?123, 2011. Disserta??o Tain? Dias Valente - 2015 P?gina 74 PARMENTIER, J., et al., New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes, Journal of Physics and Chemistry of Solids, v. 65, p. 139?146, 2004. PAYRA, P.; DUTTA, P. K., Zeolites: A Primer. In: Auerbach, S.M.M., Carraro, K. A., Dutta, P. K., Handbook Of Zoelite Science And Technology, Marcel Dekker Inc., p. 1-17, 2003. PERRY, R.H.; GREEN, D.W., Chemical Engineers Handbook. McGraw-Hill, 7th edition, New York (1999). PIRES, J., C., A.; CARVALHO, M. B., Template synthesis and characterization of mesoporous zeolites, Microporous and Mesoporous Materials, v.43, p. 277, 2001. PUJADO, P. R. et al., Industrial catalytic applications of mole-sieves, Catalysis Today, v.13, p.113-141, 1992. RODELLA, C.B. Prepara??o e caracteriza??o de catalisadores de V2O5 suportado em TiO2, Tese de Doutorado, USP, 2001. RYOO, R.; JOO, S. H.; JUN, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, The Journal of Physical Quemistry, v. 103, n? 37, 1999. SANTOS, E. N.; LAGO, R. M., Publica??es na ?rea de cat?lise envolvendo institui??es brasileiras: uma compara??o entre os peri?dicos especializados e os da SBQ, Qu?mica Nova, v. 30, N?. 6, p. 1480-1483, 2007. SILVA, J. B. et al., Caracteriza??o de materiais catal?ticos, Qualifica??o de Doutorado do Curso de P?s-Gradua??o em Engenharia e Tecnologia Espaciais/Ci?ncia e Tecnologia de Materiais e Sensores, Instituto Nacional de Pesquisas Espaciais, Minist?rio da Ci?ncia e Tecnologia, 2008. SIMONCIC, P.; ARMBRUSTER T., Peculiarity and defect structure of the natural and sybthetic zeolite mordenite: a single-crystal study, American Mineralogist, v. 89: p. 421-431, 2004. QUINTELLA, S. A., S?ntese, caracteriza??o e propriedades catal?ticas da peneira molecular nanoestruturada modificada com lant?nio, Tese de doutorado, UFRN, 2009. TAGUCHI, F. S, Microporous and Mesoporous Materials v. 77, p. 1, 2005. TAGUSHI, A.; SCHUTH, F.; Ordered mesoporous materials in catalysis, Microporous and Mesoporous Materials, v. 77, p. 1-45, 2005. TANEV, P. T.; CHIBWE, M.; PINNAVAIA, T. J.; Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds, Nature, v.368, p.321, 1994. Disserta??o Tain? Dias Valente - 2015 P?gina 75 TEIXEIRA, V. G.; COUTINHO, F. M. B.; GOMES, A. S., Principais m?todos de caracteriza??o da porosidade de resinas ? base de divinilbenzeno, Qu?mica Nova, v. 24, p. 808-818, 2001. THIELEMANN, J. P. et al., Pore structure and surface area of silica SBA-15: influence of washing and scale-up, Beilstein J. Nanotechnol, v. 2, p. 110?118, 2011. VINU, A. et al., Controlling the textural parameters of mesoporous carbon materials, Microporous and Mesoporous Materials, v. 100, p. 20?26, 2007. WANG, J., COPPENS, M., Synthesis of meso-structured silicalite-1 by combining solid phase crystallization and carbon templating, Recent Progress in Mesostructured Materials, p. 503-506, 2007. XU W. et al., A novel method for the preparation of zeolite ZSM-5, Journal of the Chemical Society, 1990. ZHANG C. et al., Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment, Microporous and Mesoporous Materials, v. 62, p. 157?163, 2003. ZHAO D. et al., Using the organic-inorganic interface to define pore and macroscale structure, Mesoporous molecular sieves, Studies in Surface Science and Catalysis, v. 117, 1998. ZHOLOBENKO V. L. et al., Initial stages of SBA-15 synthesis: An overview, Advances in Colloid and Interface Science, v. 142, p. 67?74, 2008 |
Page generated in 0.0038 seconds