Made available in DSpace on 2014-06-12T15:54:38Z (GMT). No. of bitstreams: 2
arquivo1983_1.pdf: 1880375 bytes, checksum: 3e607e8a193587ce0ea6508c676eef4e (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2008 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / O volume de dados de expressão gênica vem crescendo exponencialmente nos ultimos
anos devido as novas tecnologias da Biologia Molecular, que permitem medir a expressão
de milhares de genes ao mesmo tempo. A analise computacional desses dados tem grande
importância na Biologia e na Medicina. Ela permite, por exemplo, a descoberta de novas
classes de câncer biologicamente e clinicamente significantes e a identificação de novas
funções dos genes. As tecnicas de Aprendizado de Maquina não-supervisionado fazem
parte da metodologia de analise usada pelos especialistas. Existem diversos algoritmos
de agrupamento de dados, cada um procurando particionar os dados de uma maneira
especifica. A escolha desse algoritmo e fundamental para a qualidade do agrupamento
e, portanto, para a analise adequada dos resultados. Propomos uma metodologia de
meta-aprendizado para a escolha dos algoritmos de agrupamento de dados no contexto de
dados de expressão gênica de celulas cancergenas. Ate o momento, o meta-aprendizado
vinha sendo utilizado apenas no contexto supervisionado. Nesta Dissertação, estendemos
esse conceito para problemas não-supervisionados. Usamos bases de dados de diferentes
experimentos com microarrays de varios estudos sobre câncer. Extraimos caracteristicas
relevantes de cada base de dados a fim de emprega-las no aprendizado de Redes Neurais, k-
Vizinhos Mais Proximos e Maquinas de Vetores Suporte, utilizados como meta-aprendizes.
Esses metodos foram usados como sistemas de aprendizado para predizer a ordem de
desempenho dos algoritmos de agrupamento, bem como selecionar o melhor algoritmo, de
acordo com essas caracteristicas. Realizamos um conjunto de experimentos para validar
o uso de cada meta-aprendiz. Nesse contexto, mostramos que, em media, os rankings
sugeridos pelas Maquinas de Vetores Suporte são significativamente mais correlacionados
com o ranking ideal do que aqueles obtidos com o ranking default. Conseguimos realizar
um estudo inovador que pode ser expandido para dados de outros contextos, servindo
como ponto de partida para novas abordagens
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/2107 |
Date | 31 January 2008 |
Creators | SOARES, Rodrigo Gabriel Ferreira |
Contributors | LUDERMIR, Teresa Bernarda |
Publisher | Universidade Federal de Pernambuco |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds