A maioria das máquinas e componentes mecânicos estão sujeitos a solicitações dinâmicas as quais podem ocasionar falhas por fadiga. Um dos métodos para a previsão de falhas por fadiga é a Mecânica da Fratura Linear Elástica (MFLE). Na MFLE existem diversos modelos que descrevem a propagação de uma trinca, com suas diferentes abordagens e concepções. De forma geral, distinguem-se os modelos de propagação de trinca para carregamentos com amplitude de tensão constante e variável. Dentre os modelos de amplitude de tensão constante destaca-se a Lei de Paris, que consiste de um Problema de Valor Inicial (PVI), sendo que sua solução, em poucos casos, é determinada de forma exata. Assim, o objetivo deste trabalho é propor uma nova metodologia para solucionar alguns modelos de propagação de trinca de amplitude de tensão constante, como os modelos de Paris-Erdogan, Forman, Walker, McEvily e Priddle sem a necessidade da utilização de métodos numéricos para a solução. Essa metodologia foi desenvolvida estabelecendo cotas, superior e inferior, que delimitam o comportamento das soluções dos modelos de propagação de trinca. Para isso, através da literatura, foram delimitados os modelos a serem avaliados com base em dois aspectos principais: modelos que incorporem em suas equações as regiões I a III da propagação de trinca, e modelos que levem em consideração parâmetros como a razão de tensão, a tenacidade à fratura e o fator intensidade de tensão inicial para propagação de trinca. Para verificação da precisão e eficácia da nova metodologia, foi calculado o desvio relativo entre as cotas e a solução numérica aproximada, utilizando o método de Runge-Kutta de 4a ordem (RK4), e observou-se que as cotas são válidas como forma de aproximação do comportamento da evolução da trinca para todos os modelos estudados. Também foi avaliado o desempenho da utilização das cotas em relação à solução pelo método RK4 através do tempo de computação, e foi observado que com a utilização das cotas, consegue-se um monitoramento dinâmico dos resultados. / Most machines and mechanical components are subject to dynamic loads that can lead to fatigue failures. One of the methods for the prediction of fatigue failures is the Linear Elastic Fracture Mechanics (LEFM). In the LEFM there are several models that describe the propagation of a crack, with their different approaches and conceptions. In general, a distinction is made between the crack propagation models under constant and variable amplitude load. One of the constant amplitude load models is the Paris law, consisting of an Initial Value Problem (IVP), whose solution, in a few cases, can be obtained in closed form. Thus, the objective of this work is to propose a new methodology to solve some models of crack propagation under constant amplitude load, as the models of Paris-Erdogan, Forman, Walker, McEvily and Priddle, without requiring the use of numerical methods for the solution. This methodology was developed by establishing upper and lower bounds that delimit the behavior of the solutions of the models of crack propagation. For that, through literature, were delimited the models to be assessed on the basis of two main aspects: models that incorporate in their equations the regions I to III of the crack propagation, and models that take into account parameters such as the stress ratio, fracture toughness and threshold stress intensity factor for crack propagation. For verification of the accuracy and effectiveness of the new methodology, the relative deviation between bounds and approximate numerical solution was calculated, using the Runge-Kutta 4th order (RK4), and it was observed that the bounds are valid as a way of obtaining approximate solutions to all models. The performance of the use of bounds regarding the RK4 method solution was also evaluated through the computation time.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.utfpr.edu.br:1/1418 |
Date | 21 August 2015 |
Creators | Santos, Rodrigo Villaca |
Contributors | Silva Júnior, Claudio Roberto Ávila da |
Publisher | Universidade Tecnológica Federal do Paraná, Curitiba, Programa de Pós-Graduação em Engenharia Mecânica e de Materiais |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UTFPR, instname:Universidade Tecnológica Federal do Paraná, instacron:UTFPR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds