Return to search

A Nanoengineering Approach to Oxide Thermoelectrics For Energy Harvesting Applications

The ability of uniquely functional thermoelectric materials to convert waste heat directly into electricity is critical considering the global energy economy. Profitable, energy-efficient thermoelectrics possess thermoelectric figures of merit ZT ≥ 1. We examined the effect of metal nanoparticle – oxide film interfaces on the thermal conductivity κ and Seebeck coefficient α in bilayer and multilayer thin film oxide thermoelectrics in an effort to improve the dimensionless figure of merit ZT. Since a thermoelectric's figure of merit ZT is inversely proportional to κ and directly proportional to α, reducing κ and increasing α are key strategies to optimize ZT.

We aim to reduce κ by phonon scattering due to the inclusion of metal nanoparticles in the bulk of thermoelectric thin films deposited by Pulsed Laser Deposition. XRD, AFM, XPS, and TEM analyses were carried out for structural and compositional characterization. The electrical conductivities of the samples were measured by a four-point probe apparatus. The Seebeck coefficients were measured in-plane, varying the temperature from 100K to 310K. The thermal conductivities were measured at room temperature using Time Domain Thermoreflectance. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/36133
Date28 December 2010
CreatorsOsborne, Daniel Josiah
ContributorsMaterials Science and Engineering, Abiade, Jeremiah T., Huxtable, Scott T., Heremans, Jean J.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOsborne_DJ_T_2010.pdf

Page generated in 0.0056 seconds