• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Surface Plasmon Effect Excited on Metal Nanoparticles

Hung, Wen-chi 25 July 2008 (has links)
Collective oscillation of conduction electrons in metallic nanoparticles known as localized surface plasmon resonance has been studied for nano-optics applications. The excitation of localized surface plasmons on nano-structured metal material leads to strong light scattering and absorption. Since the localized surface plasmon resonance is strongly dependent on the shape, size, size distribution, and dielectric property of surrounding environment of nano-structured metal, the dependence can be applied in wide applications. However, the direct and non-destructed observation of nano-structured metal is required to the development of nano-technology, we proposed a real time optical observation due to the optical respons of metal nano-particles system. Furthermore, we proposed a fast and simple method to fabricate a high order metal nano-particles array and used liquid crystal material to directly modulate the surface plasmon effect on the metal nanoparticles. The purpose of this work is to study the surface plasmon effect excited on metal nanoparticles. These works are described as follows: A. The topic of the first work is ¡§Real time absorbance spectra due to optical dynamics of silver nano-particles film¡¨, we report the real time absorbance spectra due to optical dynamics of silver nano-particles film under a heating treatment from 28 to 300 ¢J. A 7nm-thicked sliver film was thermally deposited on an indium tin oxide glass substrate. In the process of heating, the real time absorbance spectra of silver nano-particles film were measured by an optical spectrometer. It was noted that the absorbance spectra of the film varied with the heat-treating temperature and time. The peak position in the spectra curve shifted to shorter wavelength below the temperature of 250 ¢J, then shifted to red band due to higher temperature treatment. With the comparison of scanning electron micrograph analysis, the real time absorbance spectra exhibited a particular optical property confirmed by the dynamic dark-field optical microscopy system. The real-time absorbance spectra and dark-field micrographs analyses lead to a direct and non-destructed observation of growing evolution of metal nano-particles. B. The topic of the second work is ¡§Laser pulse induced gold nanoparticles grating¡¨. We report the results of our experimental investigation of laser induced gold nano-particle gratings and their optical diffraction properties. A single shot of a pair of Nd-YAG laser pulses of the same polarization is directed toward a thin gold film of thickness 6 nm on a substrate of polymethyl methacrylate (PMMA). As a result of the laser illumination, the thin gold film is fragmented into an array of nano-particles. Using scanning electron and dark-field optical micrographs, we discovered that the morphology of the gold nanoparticles grating is dependent on the fluence of laser pulse. The spectrum of first order diffraction shows a spectral dependence, possibly due to the presence of the nano-particles of various sizes. The ablation of thin films of nano-thickness via the use of laser pulses may provide a simple and efficient method for the fabrication of nano-scale structures, including 2D arrays of nano-particles. C. The topic of the second work is ¡§Surface plamons induced extra diffraction band of cholesteric liquid crystal grating¡¨. We investigated the diffraction behavior of cholesteric liquid crystal (CLC) grating with the surface plasmon effect was investigated. One indium-tin-oxide plate of the CLC grating cell was covered with silver nanoparticles. With the application of a proper voltage, a well formed phase grating was constructed in the CLC cell. The CLC grating was probed by a beam of the polarized-monochromatic light, and the wavelength range was from 450 to 700 nm. It was shown that an extra first-order diffraction band was observed around 505 nm. The physical reason of the extra diffraction band could be the surface plasma effect emerged from silver nanoparticles. The extra diffraction band due to the surface plasmon effect can offer potential applications in nano-optics, such as the optical switch function.
2

Characterization of Metal Nanoparticle Interactions with Small Molecules

WEST, BRANDI 26 June 2009 (has links)
The interaction between metal nanoparticles and small molecules has been investigated by FTIR and UV-visible absorption spectroscopy. Electrospray deposition into an argon matrix was chosen as the initial method. An electrospray metal source was tested in development stage. Both the formation of a stable corona discharge as well as a stable Taylor cone were successfully completed. Problems arose when the entire system was tested. It was determined that the vacuum was insufficient for the length of the flight path. Focus then shifted to nanoparticles in more conventional environments. Sol-gel encapsulated nanoparticles were generated, in the form of both monoliths as well as thin film coatings on silicon wafers. The gels were exposed to 1atm of carbon monoxide in a gas cell. The method encountered problems due to spectral interference from the matrix. The next attempt consisted of solution stabilized nanoparticles. The solution was exposed to various amounts of both ammonium sulphate and diethylamine. There was again the problem of solvent interference, even when attempting to observe the system using Raman spectroscopy. Finally, surface stabilized nanoparticles were generated, using 3-mercaptopropyltrimethoxysilane to adhere the particles to glass slides. While the coating was successfully applied to the glass slides, as confirmed with Raman spectroscopy, it was not possible to get the nanoparticles to adhere. Future outlook for this project is briefly reviewed. / Thesis (Master, Chemistry) -- Queen's University, 2009-06-26 10:30:58.295
3

DNA Directed Self-assembly of Plasmonic Nanoparticles

January 2012 (has links)
abstract: Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable material for the construction of a plethora of nanostructures that can be used as scaffold to organize functional molecules with nanometer precision. This dissertation focuses on DNA-directed organization of metallic nanoparticles into well-defined, discrete structures and using them to study photonic interaction between fluorophore and metal particle. Presented here are a series of studies toward this goal. First, a novel and robust strategy of DNA functionalized silver nanoparticles (AgNPs) was developed and DNA functionalized AgNPs were employed for the organization of discrete well-defined dimeric and trimeric structures using a DNA triangular origami scaffold. Assembly of 1:1 silver nanoparticle and gold nanoparticle heterodimer has also been demonstrated using the same approach. Next, the triangular origami structures were used to co-assemble gold nanoparticles (AuNPs) and fluorophores to study the distance dependent and nanogap dependencies of the photonic interactions between them. These interactions were found to be consistent with the full electrodynamic simulations. Further, a gold nanorod (AuNR), an anisotropic nanoparticle was assembled into well-defined dimeric structures with predefined inter-rod angles. These dimeric structures exhibited unique optical properties compared to single AuNR that was consistent with the theoretical calculations. Fabrication of otherwise difficult to achieve 1:1 AuNP- AuNR hetero dimer, where the AuNP can be selectively placed at the end-on or side-on positions of anisotropic AuNR has also been shown. Finally, a click chemistry based approach was developed to organize sugar modified DNA on a particular arm of a DNA origami triangle and used them for site-selective immobilization of small AgNPs. / Dissertation/Thesis / Ph.D. Chemistry 2012
4

Hybridization of 4d Metal Nanoparticles with Metal-Organic Framework and the Investigation of the Catalytic Property / 4d遷移金属ナノ粒子と金属有機構造体の複合化による触媒活性変化の研究

Aoyama, Yoshimasa 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22684号 / 理博第4625号 / 新制||理||1665(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 吉村 一良, 教授 有賀 哲也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
5

A Nanoengineering Approach to Oxide Thermoelectrics For Energy Harvesting Applications

Osborne, Daniel Josiah 28 December 2010 (has links)
The ability of uniquely functional thermoelectric materials to convert waste heat directly into electricity is critical considering the global energy economy. Profitable, energy-efficient thermoelectrics possess thermoelectric figures of merit ZT ≥ 1. We examined the effect of metal nanoparticle – oxide film interfaces on the thermal conductivity κ and Seebeck coefficient α in bilayer and multilayer thin film oxide thermoelectrics in an effort to improve the dimensionless figure of merit ZT. Since a thermoelectric's figure of merit ZT is inversely proportional to κ and directly proportional to α, reducing κ and increasing α are key strategies to optimize ZT. We aim to reduce κ by phonon scattering due to the inclusion of metal nanoparticles in the bulk of thermoelectric thin films deposited by Pulsed Laser Deposition. XRD, AFM, XPS, and TEM analyses were carried out for structural and compositional characterization. The electrical conductivities of the samples were measured by a four-point probe apparatus. The Seebeck coefficients were measured in-plane, varying the temperature from 100K to 310K. The thermal conductivities were measured at room temperature using Time Domain Thermoreflectance. / Master of Science
6

Laser Sintering of Nanocomposite on Flexible Substrate: Experimental Study and Molecular Dynamics Simulation

Zheng Kang (6871595) 14 August 2019 (has links)
<p></p><p>Flexible electronics involve electronic circuits fabricated on flexible substrates. They have promising applications in wearable devices and flexible sensors etc. and have thus attracted much research interest in recent years. The working environment of flexible electronic devices may require them to go through repeating deformations, during which cracks may generate and grow in the metallic components of the devices, reducing service life of these devices. To address such challenges, it is desirable to investigate methods to improve the reliability of flexible electronics in these working conditions. </p> <p>This research reported here will focus on topics related to laser-based fabrication of carbon nanotube-metal composites on flexible substrates: </p> <p>Experimental studies were carried out to investigate the structures and properties of carbon nanotube – metal composites produced by a laser-based fabrication process on flexible substrates. Extensive characterizations and testes were carried out, including measurements of electrical resistivity of laser-sintered material, characterizations with SEM, TEM, EDS and XPS, and mechanical performance tests (bending fatigue test, static tensile test and adhesion test). The experimental study suggests that the laser-fabricated metal composites have promising potentials to help enhancing reliability and durability of metal components in flexible electronic devices. </p> <p>A molecular dynamics model was also developed to study the coalescence of metal nanoparticles (gold NPs in this study) around the end of a multi-walled carbon nanotube (MWCNT) and their interaction with the CNT at elevated temperatures. The MD model was first tested by comparing the MD-predicted NP melting points with experiment-deduced results from the literature. Then the coalescence of five 3-nm Au NPs around the end of a MWCNT and their interactions with the CNT were studied with MD simulations. The molecular system was studied under different elevated temperatures and for different carbon nanotube diameters, and the simulation results were analyzed and discussed. </p><br><p></p>
7

Modification of Titania with Gold-Copper Bimetallic Nanoparticles and Preparation of Copper-Based Photocatalysts : Application in Water Treatment / Modification du dioxyde de titane par des nanoparticules bimetalliques or-cuivre et synthèse de photocatalyseurs à base de cuivre : application au traitement de l’eau

Zibin, Hai 02 July 2013 (has links)
Deux types de photocatalyseurs ont été développés et étudiés. Nous avons modifié TiO2 en surface par des nanoparticules métalliques et nous avons synthétisé des sulfures et oxydes de cuivre. Les nanostructures ont été caractérisées par différentes techniques: HRTEM, SEM, XRD, XPS, HAADF-SEM, et TRMC. Leur activité photocatalytique a été étudiée pour la dégradation des polluants modèles: le phénol, la rhodamine B et l’orange de méthyle.Nous avons modifié la surface de TiO2 par des nanoparticules mono- et bimétalliques (induites par radiolyse ou par réduction chimique) afin d'améliorer son activité photocatalytique. Les meilleurs résultats en terme d'activité photocatalytique ont été obtenus avec la réduction par THPC (tétrakis (hydroxy méthyle) de chlorure de phosphonium) et par réduction radiolytique des ions métalliques déposés par de l'urée. La modification en surface de TiO2 par des nanoparticules de Au, Cu et Au-Cu permet l'augmentation de son activité sous la lumière UV. Le dépôt d’une très faible quantité de métal (0,5%) peut augmenter l’activité de TiO2, le coût de préparation des photocatalyseurs est donc relativement faible.Nous avons également développé la synthèse radiolytique de nanostructures de Cu2O et CuS de différentes morphologies. Leur activité photocatalytique a été étudiée. Les nanostructures de Cu2O sous forme d’octaèdres tronqués présentent une activité photocatalytique très élevée sous lumière visible. D’autre part, les nanotubes de CuS présentent à la fois une grande capacité à absorber des colorants et une activité photocatalytique élevée sous lumière visible. / Photocatalysis is recently extensively studied because it implies a variety of potential industrial applications ranging from the hydrogen generation of water splitting to the treatment of waste water. Among all the semiconductors, TiO2 has attracted the most attention. But the rate of the electron-hole recombinations is very important and TiO2 is active only under UV light. Various methods are developed to enhance the photoactivity of TiO2. Other semiconductors like copper oxides and copper sulfides also attracted attention due to their lower band-gaps which allow applications in solar photocatalysis. In this work, different kinds of photocatalysts were developed and studied: surface modified TiO2 with metal nanoparticles and copper sulfides and oxides. The nanostructures were characterized by different techniques: HRTEM, SEM, XRD, XPS, HAADF-SEM, and TRMC. Their photocatalytic activity was studied for degradation of model pollutants: phenol, rhodamine B and methyl orange. Different chemical and radiolytic methods have been investigated to modify the surface of TiO2 by mono- and bimetallic (Au, Cu and Au-Cu) nanoparticles in the aim to improve its photocatalytic activity. The best results in term of photocatalytic activity have been obtained with reduction of THPC (tetrakis (hydroxymethyl) phosphonium chloride) and with radiolytic reduction after deposition with urea. Titania surface modification with Au, Cu and bimetallic Au-Cu NPs enables the increase of the photocatalytic activity under UV light. We have found that very small amounts of metal (0.5% wt.) can activate titania for photocatalytic applications, thus the costs of photocatalyst preparation are relatively low. Radiolytic syntheses of non-TiO2 photocatalysts including Cu2O and CuS nanostructures with different morphologies have been developed. The photocatalytic activity of the synthesized photocatalysts has been studied. Truncated octahedral Cu2O exhibit an excellent photocatalytic activity under visible illumination. CuS nanotubes (NTs) exhibit both a high ability to adsorb dyes and a photocatalytic activity under visible light.
8

Selective Interfacial Interaction between Diblock Copolymers and Cobalt Nanoparticles

David, Kasi 20 November 2006 (has links)
In order to optimize the synthesis of metal nanoparticle-polymer systems, there are certain processes which must be understood. Perhaps the most important one is the selective interfacial interaction between the block copolymer and the growing metal nanoparticles. To investigate this interaction, four different approaches were taken. The first approach looked at the strength of interaction between the competing blocks of the copolymer and the metal nanoparticles surface. The second approach looked at the effect of polymer architecture on the metal nanoclusters. The third approach looked at the polymer composition and solvent effects on the phase behavior of the metal nanocluster-block copolymer nanocomposite. Finally, the influence of the metal precursor on the rate of the decomposition was examined. It was found that adsorbed layers of PS on the cobalt nanoparticles are completely displaced by PMMA when the solvent is a common good solvent. An adsorbed layer of only PMMA is also obtained through competitive adsorption from a common good solvent. However, in a selective solvent that is poor for PS, sequential adsorption leads to the formation of mixed layers. In homopolymer solutions, the cluster size reaches a minimum at a finite chain MW. In the case of diblock copolymers, the only parameter (for a fixed copolymer concentration) controlling the cluster size in suspensions of di-block copolymers is the molecular weight of one block, in this case PMMA, and is indifferent to other parameters including the molecular weight of the other block (PS) or the solvent quality. It was also found that the spatial distribution of the metal clusters synthesized in-situ coincided with the morphology dictated by thermodynamically-driven microdomain structure of the block copolymer. Moreover, the overall final morphology of the nanocomposite is locked into place while in solution, and fast solvent evaporation does not cause this morphology to change. Finally, results showed that the rate of nanocomposite synthesis occurred faster in the PS suspensions compared to PMMA, indicating that chemical bonds between PMMA and the cobalt nanoclusters slowed the thermal decomposition of the metal precursor. So the PMMA chains provided sites for nucleation, but did not necessarily aid particle growth.
9

Modification of Titania with Gold-Copper Bimetallic Nanoparticles and Preparation of Copper-Based Photocatalysts : Application in Water Treatment

Zibin, Hai 02 July 2013 (has links) (PDF)
Photocatalysis is recently extensively studied because it implies a variety of potential industrial applications ranging from the hydrogen generation of water splitting to the treatment of waste water. Among all the semiconductors, TiO2 has attracted the most attention. But the rate of the electron-hole recombinations is very important and TiO2 is active only under UV light. Various methods are developed to enhance the photoactivity of TiO2. Other semiconductors like copper oxides and copper sulfides also attracted attention due to their lower band-gaps which allow applications in solar photocatalysis. In this work, different kinds of photocatalysts were developed and studied: surface modified TiO2 with metal nanoparticles and copper sulfides and oxides. The nanostructures were characterized by different techniques: HRTEM, SEM, XRD, XPS, HAADF-SEM, and TRMC. Their photocatalytic activity was studied for degradation of model pollutants: phenol, rhodamine B and methyl orange. Different chemical and radiolytic methods have been investigated to modify the surface of TiO2 by mono- and bimetallic (Au, Cu and Au-Cu) nanoparticles in the aim to improve its photocatalytic activity. The best results in term of photocatalytic activity have been obtained with reduction of THPC (tetrakis (hydroxymethyl) phosphonium chloride) and with radiolytic reduction after deposition with urea. Titania surface modification with Au, Cu and bimetallic Au-Cu NPs enables the increase of the photocatalytic activity under UV light. We have found that very small amounts of metal (0.5% wt.) can activate titania for photocatalytic applications, thus the costs of photocatalyst preparation are relatively low. Radiolytic syntheses of non-TiO2 photocatalysts including Cu2O and CuS nanostructures with different morphologies have been developed. The photocatalytic activity of the synthesized photocatalysts has been studied. Truncated octahedral Cu2O exhibit an excellent photocatalytic activity under visible illumination. CuS nanotubes (NTs) exhibit both a high ability to adsorb dyes and a photocatalytic activity under visible light.
10

SYNTHESIS AND OPTICAL PROPERTIES OF ULTRAFINE METAL NANOPARTICLES ON DIELECTRIC ANTENNA PARTICLES

Wei, Qilin, 0000-0003-1729-1951 January 2022 (has links)
Effective light energy conversion into other forms of energy in metal and metal compound nanoparticles has been of great interest in past decades. Being illuminated by incident light, electrons in the nanoparticles can be excited to higher energy states followed by deposition of energy into other molecules around their surface and the lattices in the following relaxation process. Ultrafine nanoparticles are thus preferred in these processes due to their high specific surface areas. Moreover, the portion of excited electrons with higher energies is higher in smaller nanoparticles than in larger ones. However, the overall light power absorbed by nanoparticles is proportional to the square of particle size, which causes the ultrafine nanoparticles not to efficiently absorb the incident light, or to drive further chemical or physical processes.Light antennae materials are usually employed to enhance the light absorption of these ultrafine nanoparticles. Plasmonic nanoparticles, e.g., Ag, Au, Cu, and Al nanoparticles, enhance the light absorption of loaded nanoparticles mainly through strong electromagnetic fields generated near their surfaces and have been proven to be effective light antennae to benefit the light energy conversion of ultrafine nanoparticles. On the other hand, spherical dielectric particles, e.g., silicon dioxide nanospheres, represent a different type of light antennae with the advantages of low cost, simple synthesis, and negligible Ohmic loss when being illuminated. When the sizes of high geometric symmetry dielectric nanospheres are comparable with the wavelength of the incident light, Mie scattering can happen based on the difference in refractive index between the sphere and the surrounding medium, generating size-dependent scattering resonances at various wavelengths. At these wavelengths, strong electric fields can be created on the surface of dielectric spheres to enhance the light absorption of the nanoparticles loaded on the surface. Previous works have shown that silica nanospheres with a diameter of several hundreds of nanometers can effectively enhance the light absorption of ultrafine Pt nanoparticles and benefit photocatalytic reactions, e.g., selective oxidation of benzyl alcohol. Over the past few years, this concept has been broadened to other ultrafine nanoparticles to study their novel photo-to-chemical/physical properties. However, the availability and comprehensive understanding of the optical properties of this class of composite particles still need to be improved. These challenges limit the further development of these composite materials in new light energy conversion processes. This dissertation aims at studying this class of novel ultrafine nanoparticles/dielectric sphere composite particles synthesis and optical properties. In Chapter 2, a synthesis protocol of ultrafine ruthenium oxyhydroxide nanoparticles on the surface of silica nanospheres’ surfaces is introduced. Unlike the traditional synthesis of nanoparticles in solution followed by a loading process, the method developed in this chapter only requires the injection of aqueous ruthenium salt solution into a silica nanosphere dispersion. The obtained ultrafine nanoparticles with sizes of 2-3 nm are characterized to be ruthenium oxyhydroxide (RuOOH) nanoparticles. The silica nanospheres are crucial in stabilizing these ultrafine RuOOH nanoparticles and enhancing their light absorption. Due to the presence of ruthenium-oxygen bonds in the nanoparticles, the absorbed photons are converted to heat and transferred to the surrounding media with a photo-to-thermal conversion efficiency close to the unity. Experimental results have shown that heat can be effectively used in accelerating the reaction rate of selective oxidation of benzyl alcohol by molecular oxygen. Kinetics data also have shown that these ultrafine RuOOH nanoparticles are able to activate molecular oxygen adsorbed on their surfaces, which represents a novel property of these ultrafine RuOOH nanoparticles that is not observed in other traditional ruthenium catalysts. In Chapter 3, a more general synthesis method of ultrafine metal and metal oxyhydroxide nanoparticles on silica nanospheres is developed, inspired by the synthetic route in Chapter 2. Instead of functionalizing silica surfaces with silane agents with amino groups, the silica surfaces are selectively etched by an aqueous base to create a high density of surface hydroxyl groups. These hydroxyl groups can provide basic sites to stabilize metal ions in aqueous dispersion, which are nuclei for the further growth of larger metal oxyhydroxide nanoparticles. In this chapter, more than ten kinds of metal ions are loaded onto silica spheres, forming oxyhydroxide nanoparticles with average sizes below 5 nm. Some oxyhydroxide nanoparticles can be reduced by 5% H2/N2 to form metal nanoparticles with their ultrafine sizes maintained. The synthesis protocol is promising in preparation of bimetallic samples. The composition and optical absorption of all obtained composite particles are analyzed, demonstrating the practicability of utilizing the reported method to prepare high-quality light-absorbing composite particles. In Chapter 4, the optical absorption property of the composite particle is systematically studied. Using ultrafine Pt nanoparticles as the light absorbing material, the light absorptions of composite particles consisting of silica spheres with diameters from 100 to 1100 nm loaded with these Pt nanoparticles are studied. Through the combination of theoretical calculation based on Mie theory and the measured optical absorption spectra, the scattering resonance peaks are successfully located in each sample. It is also found that the photonic crystal effect and the general absorption of Pt nanoparticles can contribute to the light absorption spectra, especially at higher wavelengths. The relationship between the general absorption of Pt nanoparticles and the packing density of the powder is further studied. The successful deconvolution of several components in the absorption spectra can guide the further rational design of composite particles in optical-related applications. In Chapter 5, the composite particle system is further broadened to using high refractive index zinc sulfide nanospheres as a light antenna. The use of a higher refractive index light antenna is promising for obtaining higher light absorption enhancement in loaded ultrafine nanoparticles, even though the sample is dispersed in organic media with a high refractive index as well. After the successful loading of Pt nanoparticles to the surface of silica-coated zinc sulfide nanospheres, a protocol for analyzing their light absorption spectra in organic media is proposed. Size-dependent scattering resonance peaks are observed in bare zinc sulfide nanospheres and can be utilized to enhance the light absorption of Pt nanoparticles, even when the sample is sealed in high refractive index polymeric matrices. The composite particles are further employed in photothermal tests, the results prove that the better light absorption enhancement using zinc sulfide than silica nanospheres. The results introduced in this dissertation represent the first systematic and comprehensive study of ultrafine metal and metal oxyhydroxide nanoparticles loaded on the surface of dielectric light antenna particles. The conclusions open an avenue to further rational design of high-performance light-absorbing composite particles to be used in photo-to-thermal/chemical processes. / Chemistry

Page generated in 0.0842 seconds