Return to search

Design Parameter Identification and Verification for Thermoplastic Inserts

Inserts are a crucial part of household and industrial furniture. These small plastic parts which often go unnoticed to the naked eye perform crucial functions like providing a base for the furniture, leveling the furniture, safeguarding the user from edges of the tubes used and providing an aesthetic finish. The inserts have a wing like structure on the exterior which enables them to be inserted and securely held in the tubes. The inserts are assembled into the pipes manually or through machines. The force required to install these inserts in the tube is called a push-in force whereas a pull-out force is the force required for removal of the is called a pull-out force. These forces are experienced by someone who assembles the furniture together. Thus, these forces directly define the ease with which the furniture can be assembled. In the first part of the present thesis, these push-in and pull-out forces are predicted using finite element simulations. These finite element simulations were validated by performing physical assembly and disassembly experiments on these inserts. It was found that the finite element simulations of the insert are useful tool in predicting the push-in forces with a high accuracy.   These push-in and pull-out forces for a single insert vary by 2-5 times when the dimensional variations in the tube are considered. The dimensional variations can be a result of the manufacturing processes from which these tubes are produced. The maximum and minimum dimensions that the tube can have are defined by the maximum material condition (MMC) and the least material condition (LMC). To reduce the variation in push-in and pull out forces, a stricter tolerance control can be applied to the manufacturing process. To avoid this cost while having a lower variation in the push-in and pull out forces, the design of the insert was modified. To achieve this enhanced design of the insert, a metamodel based optimization technique was used in the second part of the thesis. For this optimization, the geometrical parameters - wing height, wing diameter and stem thickness the of the insert were identified as the crucial factors which govern the assembly/disassembly forces. The identification of these parameters was done through a design of experiments. These parameters were then varied simultaneously in a metamodel based optimization which had an objective to minimize the variation in forces observed for an insert when the maximum material condition and the least material conditions are considered. The result for the enhanced design of the insert was then stated in terms of the ratio of these identified parameters. The modified design of the insert not only enables the manufacturer to have better performance, but also reduces the amount of plastic material required for manufacturing of the insert.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-170132
Date January 2020
CreatorsOzarkar, Malhar
PublisherLinköpings universitet, Mekanik och hållfasthetslära
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds