Return to search

Estimates of aerosol radiative forcing from the MACC re-analysis

The European Centre for Medium-range Weather Forecast (ECMWF) provides an aerosol re-analysis starting from year 2003 for the Monitoring Atmospheric Composition and Climate (MACC) project. The re-analysis assimilates total aerosol optical depth retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) to correct
for model departures from observed aerosols. The reanalysis therefore combines satellite retrievals with the full spatial coverage of a numerical model. Re-analysed products are used here to estimate the shortwave direct and first indirect radiative forcing of anthropogenic aerosols over the period 2003–2010, using methods previously applied to satellite retrievals of aerosols and clouds. The best estimate of globally-averaged, all-sky direct radiative forcing
is −0.7±0.3Wm−2. The standard deviation is obtained by a Monte-Carlo analysis of uncertainties, which accounts for uncertainties in the aerosol anthropogenic fraction, aerosol absorption, and cloudy-sky effects. Further accounting for differences between the present-day natural and pre-industrial aerosols provides a direct radiative forcing estimate of −0.4±0.3Wm−2. The best estimate of
globally-averaged, all-sky first indirect radiative forcing is
−0.6±0.4Wm−2. Its standard deviation accounts for uncertainties
in the aerosol anthropogenic fraction, and in cloud albedo and cloud droplet number concentration susceptibilities to aerosol changes. The distribution of first indirect radiative forcing is asymmetric and is bounded by −0.1 and −2.0Wm−2. In order to decrease uncertainty ranges, better observational constraints on aerosol absorption and sensitivity of cloud droplet number concentrations to aerosol
changes are required.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:13434
Date January 2013
CreatorsBellouin, Nicolas, Quaas, Johannes, Morcrette, Jean-Jacques, Boucher, Olivier
ContributorsMet Office, Universität Leipzig, University of Reading, Europäisches Zentrum für mittelfristige Wettervorhersage, Laboratoire de Météorologie Dynamique
PublisherCopernicus Publications
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:article, info:eu-repo/semantics/article, doc-type:Text
SourceAtmospheric chemistry and physics (2013) 13, 1-18
Rightsinfo:eu-repo/semantics/openAccess
Relation10.5194/acp-13-1-2013

Page generated in 0.007 seconds