La dégradation photocatalytique de deux amines, la méthylamine (MA) et la diméthylamine (DMA), a été étudiée en présence de TiO2 Degussa P25. Différents paramètres ont été étudiés: l'adsorption à l’obscurité et sous UV, la photolyse, les cinétiques de dégradation, l'effet du pH, l'effet de la nature et de l'intensité du flux photonique ainsi que les voies de dégradation de la MA et DMA.A l’obscurité, le taux de recouvrement des groupes OH est similaire pour la MA et DMA. Sous UV, ce taux devient deux fois plus élevé pour la MA. Les réactivités de MA et DMA sont directement corrélées à leur adsorption sous UV. Les atomes d'azote sont principalement décomposés en ammonium. Le nitrite a été également détecté, mais rapidement oxydé en nitrate. À pH basique, l'hydrolyse photo‐assisté et l'attaque de OH• sur l’atome N augmente. DMA est essentiellement transformé en MA. Les analyses du Carbone Organique Total (COT) montrent la présence de produits finaux contenant de l’azote difficilement minéralisables. Nous avons montré que, quelle que soit l'énergie des photons (UV‐A ou UV‐B), le rendement quantique reste constant et égal à 0,033.L'inactivation photocatalytique de E. coli en présence de la lumière solaire naturelle en absence (SODIS) et en présence de différents catalyseurs a été étudiée. L'effet de la température sur l'inactivation de E. coli a été aussi étudié. Les résultats ont montré que l’addition des différents types de catalyseurs accélère l'effet bactéricide du rayonnement solaire. Aucun phénomène de reviviscence bactérien n’a été observé après l'arrêt de l'exposition solaire durant au moins 72 heures. Seulement les ions ammonium et potassium ont été détectés au cours de l'inactivation de E. coli en accord avec la perforation de la membrane et l’oxydation des protéines. / The photocatalytic degradation of two amino‐compounds, methylamine (MA) and dimethylamine (DMA) was investigated in the presence of UV‐irradiated TiO2 aqueous suspensions. Different parameters were studied: adsorption under dark and UV conditions, photolysis, kinetics of degradation, effect of pH, effect of the nature and intensities of photonic flux and finally the chemical pathway MA and DMA degradation.While, the percentage of covered OH in the dark was equal for MA and DMA, it becomes twice higher for MA under UV. The reactivity of MA and DMA is directly correlated with the adsorption under UV. The nitrogen atoms were decomposed mainly to ammonium. Nitrite was also formed but was rapidly oxidized to nitrate. At basic pH, photo assisted hydrolysis and the attack of OH• on N‐atom increase. DMA is mainly transformed to MA. Total Organic Carbon (TOC) analysis show the presence of final slightly mineralised intermediate compounds containing nitrogen atom. We shown that, whatever the energy of photons (UV‐A or UV‐B), the same quantum yield equal to 0.033 was obtained.The photocatalytic inactivation of E. coli under natural solar irradiation in the absence (SODIS) as well in the presence of different concentrations of varied photocatalysts has also been investigated. The effect of temperature on E. coli inactivation was studied. Results show that the additions of any types of catalyst to the water accelerate the bactericidal action of solar irradiation and leads to a total disinfection. No bacterial regrowth was observed during the subsequent dark period. Ammonium and potassium ions were formed during E. coli inactivation in agreement with the membrane perforation and the oxidation of proteins.
Identifer | oai:union.ndltd.org:theses.fr/2012LYO10316 |
Date | 17 December 2012 |
Creators | Helali, Sihem |
Contributors | Lyon 1, Guillard, Chantal |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds