Que son intérêt soit environnemental ou économique, qu’elle s’applique aux macro, micro ou nano systèmes,la récupération d’énergie est une solution permettant de s’affranchir du remplacement, de la recharge ou même de l’utilisation de piles. Cette thèse s’inscrit dans le cadre d’une collaboration entre Oxylane (Decathlon) etle CEA et son objectif est la conception d’un circuit électronique de gestion permettant de récupérer l’énergie mécanique humaine pendant une pratique sportive afin d’alimenter un capteur communicant sans fil. Le système électronique développé dans ce travail exploite l’énergie électrique issue de récupérateurs piézoélectriques,l’extrait et la met en forme grâce à une technique d’extraction efficace et un circuit de puissance approprié.Face au comportement aléatoire de l’être humain fournissant une énergie mécanique intermittente et irrégulière,la topologie Flyback et la technique d’extraction SECE ("Synchronous Electric Charge Extraction") sont utilisés. Le récupérateur est déchargé à son maximum de tension par l’intermédiaire d’une inductance couplée et de deux transistors MOSFETs commandés. Ce travail propose une nouvelle variante de SECE : la technique MS-SECE ("Multi-Shot Synchronous Electric Charge Extraction") permet de transférer l’énergie en plusieurs paquets afin de diminuer les pertes résistives ou le volume du circuit magnétique. Afin de satisfaire la contrainte d’encombrement de l’application visée par Oxylane, un circuit de récupération implémentant cette nouvelle technique est fabriqué en technologie intégrée CMOS 0,35 μm. L’ASIC possède une consommation très faible(1 μW) et commande le circuit de puissance et quelques composants discrets. De cette façon, l’énergie électrique est convertie efficacement vers une capacité réservoir sous 3V. De plus, grâce à ses deux modes de fonctionnement("passif non-optimisé" et "actif optimisé") utilisés successivement, le circuit démarre sans énergie initiale et fonctionne sans batterie rechargeable. Le système final est compatible avec une grande variété de récupérateur piézoélectriques, notamment lorsque leur tension de sortie est élevée (>50V), et permet l’autonomie en énergie d’un capteur communicant sans fil consommant environ 100 μW. / No matter what its purpose is, economic or environmental, energy harvesting is a relevant solution to replaceor to get rid of primary batteries. This thesis is part of a collaborative laboratory between the CEA and Oxylane(Decathlon) and its aim is the design of a power management circuit which harvests mechanical energy fromhuman movements during sport practice in order to power aWireless Sensor Node (WSN). The electronic circuitwhich has been developed in this work recovers energy from piezoelectric harvesters, extracts and conditionsit thanks to an efficient energy extraction technique and to an appropriate power circuit. In response to therandom behavior of human body which supplies an intermittent and irregular energy, the Flyback topology andthe Synchronous Electric Charge Extraction technique (SECE) are employed. The energy harvester is dischargedat its maximum voltage through a coupled-inductor and two MOSFETs transistors. This work proposes a newextraction technique, derived from SECE : MS-SECE ("Multi-Shot Synchronous Electric Charge Extraction")transfers the energy in several magnetic discharges which decreases the resistive losses or the size of the magneticcomponent. In order to satisfy the size constraints aimed by Oxylane, an integrated circuit, fabricated in theAMS 0,35 μm CMOS technology, implements the MS-SECE autonomously. This very low power (1 μW) ASICcontrols the power circuit and a couple of external components. This way, the electrical energy is efficientlyconverted towards a buffer capacitor under 3V. Furthermore, thanks to its two operating modes (passive/nonoptimizedand active/optimized) successively employed, the circuit self-starts and works without battery orinitial energy. The complete system is compatible with a large variety of piezoelectric harvesters, especiallywhen their output voltages are large (>50V). Finally, it enables the complete autonomy of a WSN consumingaround 100 μW.
Identifer | oai:union.ndltd.org:theses.fr/2014GRENT029 |
Date | 16 April 2014 |
Creators | Gasnier, Pierre |
Contributors | Grenoble, Chaillout, Jean-Jacques |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds