Return to search

Microfluidics for fuel cell applications

In this work, a microfluidics approach is applied to two fuel cell related projects; the study of deformation and contact angle hysteresis on water invasion in porous media and the introduction of bubble fuel cells. This work was carried out as collaboration between the microfluidics and CFCE groups in the Department of Mechanical Engineering at the University of Victoria.
Understanding water transport in the porous media of Polymer Electrolyte Membrane fuel cells is crucial to improve performance. One popular technique for both numeric simulations and experimental micromodels is pore network modeling, which predicts flow behavior as a function of capillary number and relative viscosity. An open question is the validity of pore network modeling for the small highly non-wetting pores in fuel cell porous media. In particular, current pore network models do not account for deformable media or contact angle hysteresis. We developed and tested a deformable microfluidic network with an average hydraulic diameter of 5 μm, the smallest sizes to date. At a capillary number and relative viscosity for which conventional theory would predict strong capillary fingering behavior, we report almost complete saturation. This work represents the first experimental pore network model to demonstrate the combined effects of material deformation and contact angle hysteresis.
Microfluidic fuel cells are small scale energy conversion devices that take advantage of microscale transport phenomena to reduce size, complexity and cost. They are particularly attractive for portable electronic devices, due to their potentially high energy density. The current state of the art microfluidic fuel cell uses the laminar flow of liquid fuel and oxidant as a membrane. Their performance is plagued by a number of factors including mixing, concentration polarization, ohmic polarization and low fuel utilization. In this work, a new type of microfluidic fuel cell is conceptualized and developed that uses bubbles to transport fuel and oxidant within an electrolyte. Bubbles offer a phase boundary to prevent mixing, higher rates of diffusion, and independent electrolyte selection. One particular bubble fuel cell design produces alternating current. This work presents, to our knowledge, the first microfluidic chip to produce bubbles of alternating composition in a single channel, class of fuel cells that use bubbles to transport fuel and oxidant and fuel cell capable of generating alternating current. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/3491
Date24 August 2011
CreatorsStewart, Ian
ContributorsSinton, David A., Djilali, Nedjib
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.0439 seconds