Spelling suggestions: "subject:"micro full cell"" "subject:"micro fue cell""
1 |
Microfluidics for fuel cell applicationsStewart, Ian 24 August 2011 (has links)
In this work, a microfluidics approach is applied to two fuel cell related projects; the study of deformation and contact angle hysteresis on water invasion in porous media and the introduction of bubble fuel cells. This work was carried out as collaboration between the microfluidics and CFCE groups in the Department of Mechanical Engineering at the University of Victoria.
Understanding water transport in the porous media of Polymer Electrolyte Membrane fuel cells is crucial to improve performance. One popular technique for both numeric simulations and experimental micromodels is pore network modeling, which predicts flow behavior as a function of capillary number and relative viscosity. An open question is the validity of pore network modeling for the small highly non-wetting pores in fuel cell porous media. In particular, current pore network models do not account for deformable media or contact angle hysteresis. We developed and tested a deformable microfluidic network with an average hydraulic diameter of 5 μm, the smallest sizes to date. At a capillary number and relative viscosity for which conventional theory would predict strong capillary fingering behavior, we report almost complete saturation. This work represents the first experimental pore network model to demonstrate the combined effects of material deformation and contact angle hysteresis.
Microfluidic fuel cells are small scale energy conversion devices that take advantage of microscale transport phenomena to reduce size, complexity and cost. They are particularly attractive for portable electronic devices, due to their potentially high energy density. The current state of the art microfluidic fuel cell uses the laminar flow of liquid fuel and oxidant as a membrane. Their performance is plagued by a number of factors including mixing, concentration polarization, ohmic polarization and low fuel utilization. In this work, a new type of microfluidic fuel cell is conceptualized and developed that uses bubbles to transport fuel and oxidant within an electrolyte. Bubbles offer a phase boundary to prevent mixing, higher rates of diffusion, and independent electrolyte selection. One particular bubble fuel cell design produces alternating current. This work presents, to our knowledge, the first microfluidic chip to produce bubbles of alternating composition in a single channel, class of fuel cells that use bubbles to transport fuel and oxidant and fuel cell capable of generating alternating current. / Graduate
|
2 |
Processing and Properties of Nanocomposite Thin Films for Microfabricated Solid Oxide Fuel CellsRottmayer, Michael A. 15 June 2017 (has links)
No description available.
|
3 |
Gestion de l'eau et dégradation dans les micropiles à combustible planaires / Water management and degradation in planar micro fuel cellsCoz, Erwan 19 September 2016 (has links)
Les micropiles à combustibles sont envisagées pour remplacer ou prolonger l’autonomie des batteries dans les dispositifs nomades. Dans ce domaine, la miniaturisation très poussée a abouti à la réalisation de prototypes planaires multi-cellules d’une puissance de 3 à 5 W. La différence d’architecture par rapport aux piles à combustibles « classiques », l’absence d’auxiliaires de fonctionnement et l’utilisation direct de l’air ambiant comme réactif amènent de nouvelles problématiques au niveau de la gestion de l’eau produite. Le travail de cette thèse porte sur la caractérisation de la gestion de l’eau et l’augmentation de la durée de vie d’un système de micropiles à combustible planaire « à respiration », à température ambiante. L’impact prépondérant de la thermique a été mis en avant, au niveau des points de fonctionnement (noyage aux faibles densités de courant et assèchement aux forts courants) comme au niveau local (gradients entre cellules). Les phénomènes d’assèchement et de noyage ont été étudiés grâce à l’imagerie neutronique. Un des principaux phénomènes observé est la rétrodiffusion d’eau vers l’anode suite une condensation au niveau de la cathode, conduisant à une importante perte de puissance. Une étude de la dégradation lors de fonctionnement longue durée a permis de montrer qu’une mauvaise gestion de l’eau favorise la corrosion d’éléments métalliques, conduisant à une diminution des performances. Une solution visant à éliminer ces phénomènes a été développée et implémentée avec succès. L’intégration du microporeux développé lors de cette thèse a permis d’atteindre une dégradation de 0,1 mV/h sur 2500 h de fonctionnement à 3,5 W. / Micro fuel cells have been considered as potential substitute or complement to batteries for nomad systems, in order to enhance their autonomy. Miniaturization of these objects led to the development of multi-cells planar arrays delivering 3 to 5 W. The specificities of this design compared to the “conventionnal” fuel cell stack architecture, coupled to the removal of peripheral components and the use of ambient air as oxidant, comes along with new challenges concerning water management. This work is focused on the characterization of water management and the lifetime improvement of a planar air-breathing fuel cell array at ambient temperature. Thermal effects have been demonstrated to be of first order concerning the operating conditions (flooding at low current density and drying-out at elevated one) and the local heterogeneities (between cells). Drying-out and flooding have been investigated using neutron imaging. One of the major phenomena observed is back-diffusion linked to water condensation on the cathode side, leading to anodic water accumulation and concomitant power decrease. Investigation of the degradation during long term operation pointed out corrosion of metallic elements as the major issue involved in performance decrease. Development and successful implementation of a solution to counter these troubles led to a limited degradation of 0.1 mV/h during a 2500 h operation at 3.5 W.
|
4 |
Etude expérimentale et modélisation d'une micropile à combustible à respiration / Experimental study and modeling of an air-breathing micro fuel cellZeidan, Marwan 27 January 2011 (has links)
La micropile à combustible à respiration est développée conjointement à STMicroelectronics Tours et au CEA Liten de Grenoble. De très faible puissance (stack de 1W), elle sera à moyen terme utilisée dans un système de recharge portable pour petites batteries Li-Ion (téléphones portables). Le fonctionnement et la structure de ces micropiles sont tels qu'elles sont très sensibles, entre autres, aux conditions atmosphériques caractérisant leur environnement. Cette sensibilité résulte en un comportement électrique très marqué et complexe. Or, l'aspect nomade de l'application fait que celle-ci devra pouvoir faire face à des atmosphères diverses et variées. Il est donc nécessaire de comprendre les interactions liant le comportement électrique de la micropile et l'environnement. Leur modélisation pourra par la suite apporter des éléments concrets en termes de pilotage d'auxiliaires (micro ventilateurs…) et de design de packaging, visant à contrôler l'environnement immédiat de la micropile de la meilleure façon possible. A cet effet, de nombreuses mesures, réalisées sous atmosphère maîtrisée, et sous plusieurs régimes de fonctionnement électrique, ont été croisées entre elles. Elles nous ont permis de poser les hypothèses d'un modèle quasistatique macroscopique de la micropile, reliant les conditions atmosphériques et opératoires à la réponse électrique de la micropile. Ce modèle a été développé à partir de la théorie de la diffusion en milieu poreux. Ce modèle quasistatique, faisant intervenir une description de la diffusion protonique cathodique, permet de représenter le comportement de la micropile sur une large gamme de conditions atmosphériques, et illustre physiquement autant les situations d'assèchement que de noyage. L’approche a ensuite été élargie au développement d'un modèle petit signal, paramétré grâce à une approche multi spectrale et multi conditions opératoires. Celui-ci permet entre autres de quantifier la dynamique associée au phénomène de diffusion protonique, tout en consolidant sa description quasistatique, ceci faisant intervenir des paramètres cohérents avec ceux du modèle quasistatique. Enfin, à la croisée des approches quasistatique et petit signal, les bases d'un modèle dynamique fort signal sont proposées. Elles font intervenir le modèle fort signal propre au LAPLACE, en y injectant la réponse dynamique à l'environnement et à la sollicitation électrique du bilan hydrique. Ce modèle, paramétré avec les paramètres issus du quasistatique et du petit signal, permet de représenter le comportement non linéaire de la micropile sur une large gamme de fréquences de sollicitations galvanostatiques fort signal. / The micro breathing fuel cell is developed by STMicroelectronics Tours and the CEA Liten of Grenoble. It is very low power (1W stack) and will eventually be used in a portable charging system for small Li-Ion batteries (cell phones). The structure of these micro fuel cells is such that they are very sensitive, among other things, to weather conditions characterizing their environment. This sensitivity results in a very complex electrical behavior. But the portable aspect of the application implies that it will have to cope with various atmospheres. It is therefore necessary to understand the interactions linking the electrical behavior of the micro fuel cell and the atmosphere. A model may then provide some concrete leads in terms of auxiliary control (micro fans ...) and packaging design, to control the immediate environment of the microcell in the best possible way. To this end, a lot of measure were carried out under controlled atmosphere, and in several electrical operating modes, and were crossed with each other. They let us build the assumptions for a macroscopic steady state model of micro fuel cell, linking atmospheric and operating conditions to the electrical response of the micro fuel cell. This model was inspired by the theory of diffusion in porous media. This steady state model, involving a description of a cathodic protonic diffusion, is used to represent the behavior of the micro fuel cell on a wide range of atmospheric conditions, and physically illustrates both drying out situations than drowning. The approach was then extended to develop a small signal model, configured with a multi spectral and multi-operating conditions approach. It allows among other things to quantify the dynamics associated with the phenomenon of proton diffusion, while consolidating its steady state description, this involving parameters consistent with those of the steady state model. Finally, at the intersection of the steady state and small signal approaches, the bases for a large signal dynamic model are proposed. They involve the large signal model which is specific to the LAPLACE, by injecting in it the dynamic response to environmental stress and to water balance. This model, with parameters set from the steady state and small signal models, turns out to be able to represent the nonlinear behavior of the micro fuel cell over a wide range of frequencies of the galvanostatic strong signal solicitation
|
5 |
Catalyseurs électrochimiques pour le stockage et la réduction des oxydes d'azote (NOx) / Electrochemical catalysts for nitrogen oxides storage/reductionHadjar, Abdelkader 22 July 2009 (has links)
L’objectif de ce travail était de démontrer la possibilité de coupler sur un même catalyseur, la fonction de stockage et réduction des NOx (sur le baryum) avec un effet électrochimique reposant sur un système micropile. Ce système micropile est composé de nanoparticules catalytiques (Pt et Rh) déposés sur conducteur ionique par les ions O2- (YSZ) en contact avec un support conducteur électronique (SiC dopé) de façon à pouvoir générer, sous mélanges réactionnels, une force électromotrice capable de réduire électrochimiquement une partie des NOx sur le Pt et d’oxyder le CO, les hydrocarbures imbrûlés et H2 sur le Rh. L’effet micropile a été observé sur un catalyseur Pt/Ba (matériau de stockage)/YSZ/Rh enduit dans les canaux d’un filtre à particule en carbure de silicium dopé, en condition essence pauvre à 400°C et en condition Diesel à plus basse température (300°C). Une augmentation de la conversion des NOx d’environ 10% a été observé sur les catalyseurs micropile. L’effet électrochimique a été détecté par une surproduction de CO2, en milieu riche (très peu ou pas de O2) provenant de la réaction d’oxydation électrochimique du CO (produit par vaporeformage) en réagissant avec les ions O2- provenant de YSZ. De plus, des tests catalytiques ont montré que YSZ peut être utilisée comme matériau de stockage des NOx. En effet, un traitement réducteur préalable augmente fortement sa capacité de stockage des NOx / The main objective of this study was to demonstrate the coupling between NOx storage/reduction process on barium, with an electrochemical reduction of NOx (micro fuel cell effect) on the same catalyst. The micro fuel cell effect is ensured by a an electromotive force (potential) which is created between catalytic nanoparticules (Pt and Rh) in contact with an ionic conductor (YSZ) and an electronic conductor (doped SiC). The micro fuel cell effect was observed, during the regeneration phase of the catalysts (rich period), on a Pt/Ba/doped α-SiC-YSZ/Rh monolithic system under lean-burn gasoline conditions at 400°C with an enhancement of about 10 % of the NOx conversion over a complete cycle lean/rich. This electrochemical effect was characterized by the electrochemical oxidation of CO (produced by steam reforming) into CO2 by using O2- ions coming from YSZ. Under Diesel conditions, the micro fuel cell system was found to work at low temperature especially at 300°C. In the second part of the work, a new generation of NOx Storage and reduction catalyst was developed consisting only of noble metals (Pt and/or Rh) deposited on YSZ support (Ba free catalyst). The catalytic measurements revealed that YSZ can be used as a NOx storage material in lean burn conditions (Gasoline and Diesel) especially when it was previously reduced under hydrogen. The storage mechanism would take place on the oxygen vacancies created by the removal of O-2 ions from the YSZ structure
|
Page generated in 0.089 seconds