Return to search

Attraction des cellules sur micro-aimants : applications au suivi de l'endocytose et au tri cellulaire .

De nos jours, la manipulation d’objets à l’aide du champ magnétique se trouve au cœur de nombreuses innovations en nanotechnologies. D’autre part, et du fait de sa capacité d’actionner à très petite échelle, l’utilisation du champ magnétique en biologie et en médecine est en plein essor. En outre, les grandes avancées en matière de fabrication de micro-sources magnétiques ont permis la synthèse d’aimants de tailles micrométriques intégrables dans des microsystèmes microfluidiques comme les laboratoires sur puce, très à la mode à l’heure actuelle. Bien que la séparation de cellules marquées magnétiquement, à l’aide d’un macro-aimant permanent ou d’électroaimant est une tâche aujourd’hui bien maitrisée, le gradient de champ généré par ces sources magnétiques reste insuffisant pour l’isolement de cellules marquées avec une très faible quantité de nanoparticules magnétiques. La réduction de la taille des aimants, évoquée dans cette thèse, constitue une alternative prometteuse, permettant la génération d’énormes gradients de champ magnétique à l’échelle micrométrique. L’objectif de ce travail est donc d’étudier l’attraction de cellules faiblement marquées magnétiquement, sur des réseaux de micro-aimants permanents micro-structurés, dans le but de concevoir un dispositif microfluidique original intégrant des micro-sources magnétiques permanentes, autonomes et passives. / Nowadays, the magnetic field applications at the microscopic scale have been described by an increasing attention as magnetic sources. Moreover, they can be integrated directly in the microchip. Nevertheless, the process of manipulating magnetic micro objects remains a challenge since the generation of magnetic fields and field gradients is strong enough. Previous research has reported the use of microelectromagnets to create magnetic field gradients in order to manipulate biological objects. However, the use of permanent magnetic microstructures permits to avoid Joule heating issues inherent to the electromagnets. In addition, no energy source is required. The aim of this thesis is to study the influence of physico-chemical characteristics of iron oxide nanoparticles on the rate of endocytosis, using an array of micro-magnets. Most probably, the applications of this reserach can be directly related to the gene therapy and can occur in most basic genetic studies. Another part of this work consists of combining microfluidic and magnetic forces in order to develop a cell sorting micro-systems that can be integrated in lab-on-chip or MEMS.

Identiferoai:union.ndltd.org:theses.fr/2014ECDL0012
Date25 April 2014
CreatorsOsman, Osman
ContributorsEcully, Ecole centrale de Lyon, Buret, François
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds