Return to search

Microarchitectural techniques to reduce energy consumption in the memory hierarchy

This thesis states that dynamic profiling of the memory reference stream can improve energy
and performance in the memory hierarchy. The research presented in this theses provides
multiple instances of using lightweight hardware structures to profile the memory
reference stream. The objective of this research is to develop microarchitectural techniques
to reduce energy consumption at different levels of the memory hierarchy. Several simple
and implementable techniques were developed as a part of this research. One of the
techniques identifies and eliminates redundant refresh operations in DRAM and reduces
DRAM refresh power. Another, reduces leakage energy in L2 and higher level caches for
multiprocessor systems. The emphasis of this research has been to develop several techniques
of obtaining energy savings in caches using a simple hardware structure called the
counting Bloom filter (CBF). CBFs have been used to predict L2 cache misses and obtain
energy savings by not accessing the L2 cache on a predicted miss. A simple extension of
this technique allows CBFs to do way-estimation of set associative caches to reduce energy
in cache lookups. Another technique using CBFs track addresses in a Virtual Cache and
reduce false synonym lookups. Finally this thesis presents a technique to reduce dynamic
power consumption in level one caches using significance compression. The significant
energy and performance improvements demonstrated by the techniques presented in this
thesis suggest that this work will be of great value for designing memory hierarchies of
future computing platforms.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/28265
Date03 April 2009
CreatorsGhosh, Mrinmoy
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0019 seconds