[pt] A espuma é amplamente usada em operações de recuperação de óleo para melhorar a eficiência de varrido, em operações de armazenamento de gás e acidificação, e para resolver problemas causados por zonas ladras ou segregação gravitacional. A espuma, que pode ser pré-formada e injetada no reservatório ou produzida in situ através da geometria do meio poroso, escoa nas regiões de alta permeabilidade e desvia o fluido de deslocamento na direção do óleo aprisionado, reduzindo a permeabilidade relativa ao gás
e levando a uma frente de deslocamento mais estável. A eficiência desses processos depende muito da geração e estabilidade dos filmes de espuma (lamelas) que residem nos poros. A mobilidade do gás injetado é reduzida quando a espuma é formada; esta redução é atribuída ao aumento da viscosidade
efetiva do gás e à redução da permeabilidade relativa ao gás. As lamelas formadas criam resistência ao fluxo do gás, impedindo seu movimento livre dentro do meio poroso. A população de lamelas que compõe a
espuma está diretamente relacionada com a concentração de surfactante, e seu fluxo e mobilidade são funções da geometria dos poros e das propriedades da espuma. No entanto, a dinâmica da formação de espuma em meios porosos não é totalmente compreendida devido à sua complexidade O objetivo
da primeira parte desta pesquisa é compreender o impacto do aumento da concentração de surfactante na formação de espuma durante a injeção de gás em um modelo bidimensional de meio poroso de vidro saturado com uma solução de surfactante. A segunda parte foca na formação de espuma e
sua implicação no deslocamento de óleo durante o processo de injeção SAG (injeção alternada de solução de surfactante e gás) considerando diferentes concentrações de surfactante. Uma configuração microfluídica composta por micromodelo de vidro, bomba de seringa, transdutor de pressão e microscópio
foi usada para visualizar o deslocamento da escala dos poros e correlacionar a evolução da formação das lamelas durante o processo de injeção com a diferença de pressão para diferentes condições de fluxo através do processamento de imagem. A dinâmica de formação das lamelas é relatada e relacionada ao comportamento do fluxo macroscópico. / [en] Foam is widely used in oil recovery operations to improve sweep efficiency, in gas storage and acidization operations, and to solve problems caused by either a thief zone or gravity override. Foam, which can be
preformed and injected into the reservoir or produced in situ through the pore space, fills the high permeability areas known as thief zones and diverts the displacing fluid into the direction of trapped oil, reducing the relative permeability of gas and leading to a more stable displacement front.
The efficiency of these processes largely depends on the generation and stability of the foam films (lamellae) residing in the pores. The mobility of the injected gas is reduced when foam is formed; this reduction is attributed to the reduction of the gas phase relative permeability. The lamellae formed create resistance against the gas flow, impeding its free motion inside the porous media. The lamellae population that composes the foam is directly related to surfactant concentration, and their flow and mobility are functions of the pore geometry and foam properties. However, the dynamics of foam formation in porous media is not fully understood due to its complexity. The goal of the first part of this research
is to understand the impact of increasing surfactant concentration on foam formation during gas injection in a two-dimensional porous media glass model occupied by a surfactant solution. The second part focuses
on foam formation and its implications for oil displacement during the SAG (surfactant-alternating-gas) injection, considering different surfactant concentrations. A microfluidic setup composed of a glass micromodel, syringe pump, pressure transducer and microscope, was used to visualize the
pore-scale displacement and correlate the evolution of lamellae formation during the injection process with pressure difference for different flow conditions through image processing. The dynamics of lamellae formation is reported and related to macroscopic flow behavior.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:57011 |
Date | 11 January 2022 |
Creators | NICOLLE MIRANDA DE LIMA |
Contributors | MARCIO DA SILVEIRA CARVALHO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.003 seconds