Return to search

Transport de fluides dans les matériaux microporeux / Transport of fluids in microporous materials

L'exploitation des ressources non conventionnelles de roches mères telles que les schistes gazeux contribue de plus en plus au mix énergétique mondial en raison de la raréfaction des ressources conventionnelles. L'exploitabilité de ces réservoirs repose principalement sur la qualité, la teneur et le type de matière organique qu'ils contiennent. En effet, il est admis que plus de la moitié des hydrocarbures présents dans les schistes sont adsorbés dans la matière organique solide, appelée kérogène, dont la structure est microporeuse et amorphe, et qui représente à la fois la source et le réservoir d'hydrocarbures. Le kérogène se trouve sous forme dispersée dans la matière minérale et représente environ 5% de la masse totale de la roche. La compréhension des propriétés de transport des fluides à l'échelle des micropores, en particulier leur dépendance aux conditions thermodynamiques et aux propriétés structurelles du matériau, revêt une importance cruciale pour l'optimisation de la récupération de ces ressources. De ce point de vue, l'objectif principal de cette thèse vise à bien documenter les propriétés de transport des hydrocarbures à travers les kérogènes et améliorer leur description théorique. Pour ce faire, nous avons fait le choix d'étudier les propriétés de transport des fluides à travers ces matériaux en utilisant une approche numérique basée sur des simulations moléculaires de type dynamique moléculaire et Monte Carlo, conduites sur des modèles moléculaires de kérogène mature et sur un système modèle simplifié. Ceci nous a permis d’explorer les mécanismes de transport à une échelle où l'observation expérimentale est difficile, voire impossible, et également de nous situer dans des conditions thermodynamiques supercritiques (haute pression, haute température) caractéristiques des réservoirs de gaz de schiste. La première partie de ce travail a consisté à étudier les propriétés de transport et d'adsorption des fluides purs dans des structures de kérogène mature reconstruites par simulations moléculaires. Ensuite, la dépendance des propriétés de transport aux variations des conditions thermodynamiques (température à gradient de pression fixe) ainsi qu'à la distribution de tailles de pores a été étudiée. Concernant le deuxième objectif, afin de mieux comprendre et modéliser la diffusion des fluides à l'échelle d'une constriction microporeuse entre deux pores, nous avons étudié un système modèle constitué d'une seule fente microporeuse formée dans un solide mono-couche. L'étude a consisté à simuler la diffusion de transport d'un fluide à travers la constriction en variant les paramètres géométriques (rapport d’aspect entre la largeur du pore et la taille des molécules diffusantes) et thermodynamiques (température, chargement en fluide). Ces résultats de simulations ont été comparés aux prédictions d'un modèle théorique, fondé sur la théorie cinétique des gaz et la mécanique statistique classique, qui prend en compte l'effet de la température sur la porosité accessible ainsi que l'effet du chargement en fluide à l'entrée du seuil de pore. Un bon accord a été observé entre les valeurs simulées des coefficients de diffusion et les prédictions du modèle proposé. Ce système a ainsi contribué à la compréhension des phénomènes de tamisage moléculaire survenant lors du franchissement d'une constriction microporeuse, inhérents au transport de fluides dans les matériaux microporeux tels que le kérogène. / The share of unconventional resources in the global energy mix is expected to rise because of the shortage of conventional fossil resources. The major part of these unconventional resources are found in source rocks such as gas shales. The profitability of shale reservoirs strongly depends on the quality, type and content of organic matter contained in the rock. Indeed, it is admitted that more than half of the hydrocarbons stored in the shale are adsorbed in the solid organic matter, the so-called kerogen. The latter exhibits a microporous amorphous structure, and acts as both the source and the reservoir of hydrocarbons. Kerogen is finely dispersed in the mineral matrix and represents about 5% of the total mass of the rock. The understanding of the transport of fluids at the microporous scale is of crucial importance for optimizing the recovery of these resources. More specifically, how the structural properties of the microporous material and thermodynamic conditions influence its transport properties is an open question. In this regard, the main objective of this thesis is to document the transport properties of hydrocarbons through kerogens and to improve their theoretical description. To do so, we opted for a numerical approach based on molecular simulations of molecular dynamics and Monte Carlo codes performed on molecular models of mature kerogen, as well as simplified model systems. We thus explored transport mechanisms at the molecular scale, at which experimental observations are difficult, if not impossible. Supercritical thermodynamic conditions (high pressure, high temperature) were considered, which are characteristic of shale gas reservoirs. The first part of this work has consisted in studying the transport and adsorption properties of pure fluids in mature kerogen structures reconstructed by molecular simulations. We studied the dependence of the transport properties on the variations of the thermodynamic conditions (pressure gradient at a fixed temperature) as well as the influence of the pore size distribution. In order to better understand and describe the diffusion of fluids at the scale of a microporous constriction between two pores, the second objective of this thesis focused on a model system, which consisted of a single-layer solid with a slit aperture of controllable width. We simulated the diffusional transport of simple fluids through the constriction for various geometrical parameters (aspect ratio between the width of the pore and the size of the diffusing molecules) and thermodynamic conditions (temperature, fluid loading). These simulations results have been compared to the predictions of a theoretical model, based on the kinetic theory and classical statistical mechanics, which accounts for the effect of temperature on the accessible porosity and the effect of fluid loading at the entrance of the pore. A good agreement was observed between the simulated values of the diffusion coefficients and the predictions of the proposed model. The investigation of this simplified system helped in understanding the molecular sieving phenomena inherent to the transport of fluids in microporous materials such as kerogen.

Identiferoai:union.ndltd.org:theses.fr/2017PAUU3018
Date11 December 2017
CreatorsOulebsir, Fouad
ContributorsPau, Galliéro, Guillaume
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds