Return to search

Exceptional Properties in Friction Stir Processed Beta Titanium Alloys and an Ultra High Strength Steel

The penchant towards development of high performance materials for light weighting engineering systems through various thermomechanical processing routes has been soaring vigorously. Friction stir processing (FSP) - a relatively new thermomechanical processing route had shown an excellent promise towards microstructural modification in many Al and Mg alloy systems. Nevertheless, the expansion of this process to high temperature materials like titanium alloys and steels is restricted by the limited availability of tool materials. Despite it challenges, the current thesis sets a tone for the usage of FSP to tailor the mechanical properties in titanium alloys and steels. FSP was carried out on three near beta titanium alloys, namely Ti6246, Ti185 and Tiβc with increasing β stability index, using various tool rotation rates and at a constant tool traverse speed. Microstructure and mechanical property relationship was studied using experimental techniques such as SEM, TEM, mini tensile testing and synchrotron x-ray diffraction. Two step aging on Ti6246 had resulted in an UTS of 2.2GPa and a specific strength around 500 MPa m3/mg, which is about 40% greater than any commercially available metallic material. Similarly, FSP on an ultra-high strength steel―Eglin steel had resulted in a strength greater than 2GPa with a ductility close to 10% at around 4mm from the top surface of stir zone (SZ). Experimental techniques such as microhardness, mini-tensile testing and SEM were used to correlate the microstructure and properties observed inside SZ and HAZ's of the processed region. A 3D temperature modeling was used to predict the peak temperature and cooling rates during FSP. The exceptional strength ductility combinations inside the SZ is believed to be because of mixed microstructure comprised of various volume fractions of phases such as martensite, bainite and retained austenite.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc984167
Date05 1900
CreatorsTungala, Vedavyas
ContributorsMishra, Rajiv S., Banerjee, Rajarshi, 1972-, Mukherjee, S. (Sundeep), Xia, Zhenhai, 1963-, Young, Marcus L.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatxii, 94 pages, Text
RightsPublic, Tungala, Vedavyas, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0021 seconds