Cette thèse propose de réaliser des micro/nano-pinces magnétiques articulées dont l'actionnement à distance est obtenu par l'application d'un champ magnétique. Cette idée innovante consiste à relier par l'un de leurs côtés deux microparticules magnétiques parallélépipédiques à l'aide d'une nano-charnière en or flexible. Destinées à des applications biotechnologiques et médicales, ces pinces ont pour finalité de capturer des micro/nano-objets ciblés biochimiquement pour y appliquer et mesurer des forces. Le défi de ce projet était de mener, à partir d'une idée simple, un ensemble d'études à la fois théoriques et technologiques, pour aboutir à une première preuve de concept. Dans ce but, un modèle analytique a d'abord été construit pour prédire le comportement magnéto-mécanique des pinces en fonction de divers paramètres physiques. Ensuite, un procédé de fabrication inspiré des techniques de la microélectronique a été développé pour parvenir à la réalisation d'un prototype de pince fonctionnel. Enfin, l'ouverture par l'action d'un champ magnétique de pinces fixées à un substrat, a pu être démontrée à l'aide d'une expérience originale installée dans un microscope électronique à balayage. Les résultats de ces expériences, en bon accord avec nos prédictions théoriques, ont permis de quantifier le comportement mécanique de la nano-charnière en or. Fixées à un substrat, ces pinces forment un réseau de micro-surfaces réfléchissantes qui trouveront des applications en microfluidique (bio-puces) ou en nano-physique. Libérées en solution, les pinces pourraient être employées de manière originale en micro-manipulation d'objets biologiques ou diagnostic et thérapie cellulaire. / The objective of this thesis was to elaborate magnetic micro/nano-tweezers remotely actuable by the application of a magnetic field. This innovative idea consists in binding two parallelepiped magnetic microparticles by one of their sides with a flexible gold nano-hinge. Intended for biotechnological and medical applications, these tweezers aim at capturing biochemically targeted micro/nano-objects, in order to exert forces on them and perform force measurements. In this project starting from a simple idea, the challenge was to carry out theoretical and technological studies leading to a first proof of concept. To this end, an analytical model was first elaborated to predict the magneto-elastic behavior of the tweezers, depending on various physical parameters. Then, a fabrication process inspired from microelectronic techniques was developed to complete a functional prototype of tweezers. Finally, the remote actuation of such tweezers, kept attached to a substrate, by the application of a magnetic field, was demonstrated using an original experiment set up inside a scanning electron microscope. These experiments yielded results in good agreement with our theoretical predictions and allowed the quantification of the gold nano-hinge elastic behavior. Attached to a substrate, these tweezers constitute an array of reflective micro-surfaces, which can find applications in microfluidics (biochips) or in nano-physics. Released in solution, the tweezers could be used in an original way for biological objects micro-manipulation or cell diagnostic and the
Identifer | oai:union.ndltd.org:theses.fr/2015GREAY018 |
Date | 18 June 2015 |
Creators | Iss, Cécile |
Contributors | Grenoble Alpes, Dieny, Bernard |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds