Return to search

Avalia??o farmacol?gica das atividades antinociceptiva e anti-inflamat?ria do composto (?)-4-cloro-6-(naftaleno-1-il)-tetrahidro-2h-pirano-2-il-metanol / Antinociceptive and anti-inflammatory profile of (?)-4-chloro-6-(naphthalen-1-yl)-tetrahydro-2H-pyran-2-yl-methanol

Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-02-14T12:00:15Z
No. of bitstreams: 1
2016 - Gabriela Mastrangelo Gon?alves.pdf: 1218648 bytes, checksum: d31754b24278f68ec75382b5ff3932c0 (MD5) / Made available in DSpace on 2017-02-14T12:00:15Z (GMT). No. of bitstreams: 1
2016 - Gabriela Mastrangelo Gon?alves.pdf: 1218648 bytes, checksum: d31754b24278f68ec75382b5ff3932c0 (MD5)
Previous issue date: 2016-02-23 / Funda??o Carlos Chagas Filho de Amparo ? Pesquisa do Estado do RJ - FAPERJ / Several drugs in current use were discovered during experimental tests and by observing animals. When a new compound looks promising, it usually undergoes changes in its chemical structure in order to perfect its selectivity, potency and therapeutic efficacy. The aim of this study was to evaluate the antinociceptive and anti-inflammatory activities of a new synthetic hybrid compound (?)-4-chloro-6-(naphthalen-1-yl)-tetrahydro-2H-pyran-2-yl-methanol (CTHP) prepared from a previous prototype acid, (?) - cis- (6-ethyl-tetrahydropyran-2-yl) Formic. The compound CTHP was evaluated in acute pain induction assays. Oral administration of the compound was able to induce antinociceptive activity in models of writhing induced by acetic acid, formalin (both stages) and tail flick. To elucidate the mechanism of action of the compound, the tail flick model was used. This model was perform by prior administration of naloxone (opioid antagonist non-selective), where we observed the inhibition of the effect produced by the compound. The selective involvement of opioid receptors (?, ? and ?) was then evaluated by prior administration of methylnaltrexone, naltrindol, and nor-binaltorphimine, respectively, where only nor-binaltorphimine was able to reduce the analgesic effect of the compound. To evaluate the possible role of the NO/cGMP/KATP, animals were pretreated with N-nitro-L-arginine methyl ester (L-NAME), 1H- [1,2,4 ] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) (inhibitor of guanylate cyclase sensitive to nitric oxide), and glibenclamide (blocker of the ATP-regulated potassium channels), where reduction was observed with the administration of analgesic effect prior to all of these. In the tolerance induction test, both morphine and compound developed tolerance, however the compound perform at a slower rate and developed cross-tolerance with morphine. To assess the involvement of serotonin pathway in the activity of the compound, daily administration for 3 days of 4-chloro-DL-phenylalanine (inhibitor of the enzyme tryptophan hydroxylase) was performed. No changes in the analgesic effect of the compound was noted, with regard to the involvement of serotonin pathway. The open field model was used to assess the possibility of interference from motor performance on the analgesic effect, which demonstrated absence of this interference. As for anti-inflammatory activity results in paw edema test indicate anti-oedematogenic effect of compound. There was a decrease in the number of total leukocytes, indicating that the compound was able to reduce existing inflammation in leukocyte migration in the air pouch model. The compound also demonstrated an inhibitory activity on TNF-? production and selective inhibition of COX-2 enzyme. These results indicate significant antinociceptive activity of the compound without evidence of motor impairment. The compound CTHP showed central analgesic effect, which has contribution of opioid systems (selective for the ?-like receptors) and nitrergic in its mechanism of action. It has also showed an anti-inflammatory activity, with inhibition of leukocyte migration, TNF-? production and selective inhibitory activity on COX-2. / Diversos f?rmacos de uso corrente foram descobertos durante ensaios experimentais e mediante a observa??o em animais. Quando um novo composto parece promissor, geralmente este sofre altera??es em sua estrutura qu?mica a fim de aperfei?oar a sua seletividade, pot?ncia e efic?cia terap?utica. O objetivo deste estudo foi avaliar as atividades antinociceptiva e anti-inflamat?ria de um novo composto sint?tico (?)-4-cloro-6-(naftaleno-1-il)-tetrahidro-2h-pirano-2-il-metanol (CTHP) preparado a partir de um prot?tipo anterior, ?cido (?)-cis-(6-etil-tetrahidropirano-2-il) f?rmico. O composto CTHP foi avaliado em ensaios de indu??o de dor aguda. A administra??o oral do composto foi capaz de induzir atividade antinociceptiva nos modelos de contor??es abdominais induzidas por ?cido ac?tico, formalina (em ambas as fases) e retirada da cauda. Para elucida??o do mecanismo de a??o do composto, o modelo de retirada de cauda foi utilizado. Neste modelo foi realizada a administra??o pr?via de naloxona (antagonista opioide n?o-seletivo), em que foi observada a inibi??o do efeito produzido pelo composto. Assim, foi ent?o avaliada a participa??o seletiva de receptores opioides (?, ? e ?), atrav?s de administra??o pr?via de metilnaltrexona, naltrindol e nor-binaltorfimina, respectivamente, onde somente a nor-binaltorfimina foi capaz de reduzir o efeito antinociceptivo do composto. Para avaliar a poss?vel participa??o da via NO/GMPc/KATP, os animais foram pr?-tratados com N-nitro-arginina-L-metil ?ster (L-NAME), 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalina-1-ona (ODQ) (inibidor da guanilato ciclase sens?vel ao ?xido n?trico) e glibenclamida (bloqueador de canais de pot?ssio regulados por ATP), foi observado redu??o do efeito antinociceptivo com a administra??o pr?via de todos estes. No teste de indu??o de toler?ncia, tanto a morfina quanto o composto desenvolveram toler?ncia, por?m o composto de forma mais lenta e houve desenvolvimento de toler?ncia cruzada com a morfina. Para avaliar o envolvimento da via serotonin?rgica na atividade do composto, foi realizada a administra??o di?ria por 3 dias de 4-cloro-DL-fenilalanina (inibidor da enzima triptofano hidroxilase). Nenhuma altera??o no efeito antinociceptivo do composto foi observado, no que diz respeito ao envolvimento da via serotonin?rgica. J? o modelo de campo aberto foi utilizado para avaliar a possibilidade de interfer?ncia da performance motora sobre o efeito antinociceptivo, foi demonstrada aus?ncia desta interfer?ncia. Quanto ? atividade anti-inflamat?ria, o resultado no teste de edema de pata indica efeito antiedematog?nico do composto. Houve uma diminui??o na quantidade de leuc?citos totais, indicando que o composto foi capaz de reduzir a migra??o leucocit?ria na inflama??o existente na bolsa de ar subcut?neo. O composto tamb?m demonstrou atividade inibit?ria sobre a produ??o de TNF-? e inibi??o seletiva da enzima COX-2. Esses resultados indicam atividade antinociceptiva significativa do composto, sem evid?ncias de comprometimento motor. O composto CTHP demonstrou efeito antinociceptivo central, tendo este ?ltimo contribui??o dos sistemas opioide (seletivo para receptores do tipo ?) e nitr?rgico em seu mecanismo de a??o. E ainda, atividade anti-inflamat?ria, com inibi??o da migra??o leucocit?ria, de TNF-? e atividade inibit?ria seletiva sobre COX-2.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1425
Date23 February 2016
CreatorsGon?alves, Gabriela Mastrangelo
ContributorsMarinho, Bruno Guimar?es, Cortes, Wellington da Silva, Matheus, Maria Eline
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Ci?ncias Fisiol?gicas, UFRRJ, Brasil, Instituto de Ci?ncias Biol?gicas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
Relation8 REFER?NCIAS BIBLIOGR?FICAS AIRES, M. M. Fisiologia. Rio de Janeiro: Guanabara Koogan, 2008. 1252p. AKIL, H.; OWENS, C.; GUTSTEIN, H.; TAYLOR, L.; CURRAN, E.; WATSON, S. Endogenous opioids: overview and current issues. Drug Alcohol Depend, v. 51, n. 1-2, p. 127-40, 1998. AL-HASANI, R.; BRUCHAS, M. R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, v. 115, n. 6, p. 1363-81, 2011. ALVARENGA, F.Q.; MOTA, B.C.F.; LEITE, M.N.; FONSECA, J.M.S.; OLIVEIRA, D.A.; ROYO, V.A.; SILVA, M.L.A.; ESPERANDIM, V.; BORGES, A.; LAURENTIZ, R.S. In vivo analgesic activity, toxicity and phytochemical screening of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine. Journal of Ethnopharmacology 150, 280?284, 2013. ALVES, D; DUARTE, I.D. Involvement of ATP-sensitive K(+) channels in the peripheral antinociceptive effect induced by dipyrone. Eur. J. Pharmacol.; 444: 47-52. 2002. AMARANTE, L.H.; DUARTE, I.D. The kappa-opioid agonist (+/-)-bremazocine elicits peripheral antinociception by activation of the L-arginine/nitric oxide/cyclic GMP pathway. Eur. J. Pharmacol., v.454, n.1, p. 19-23, 2002. AMAYA, F; IZUMI, Y; MATSUDA, M; SASAKI, M. Tissue Injury and Related Mediators of Pain Exacerbation. Curr Neuropharmacol.; 11(6): 592?597, 2013. BALAJI, B; HARIHARAN, S; SHAH, D.B; RAMANATHAN, M. Discovery of potential and selective COX-1 inhibitory leads using pharmacophore modelling, in silico screening and in vitro evaluation. Eur. J. Med. Chem. 86: 469-480. 2014. BALTIERI, D.A.; STRAIN, E.C.; DIAS, J.C.; SCIVOLETTO, S.; MALBERGIER, A.; NICASTRI, S.; JER?NIMO, C.; ANDRADE, A.G. Brazilian guideline for the treatment of patients with opioids dependence syndrome. Rev Bras Psiquiatr 2004;26(4):259-69, 2004. BANSAL, S;BALA, M; SUTHAR, S.K;CHOUDHARY, S; BHATTACHARYA, S; BHARDWAJ, V; SINGLA, S; JOSEPH, A. Design and synthesis of novel 2-phenyl-5-(1, 3-diphenyl-1 H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2inhibitors with potent anti-inflammatory activity. Eur. J. Med. Chem. 80:167- 174. 2014. BARROS, H.M; TANNHAUSER, M.A; TANNHAUSER, S.L; TANNHAUSER, M. Enhanced detection of hyperactivity after drug withdrawal with a simple modification of the open-field apparatus. J Pharmacol Methods. 26(4):269-275, 1991. 55 BOHN, L.M; GAINETDINOV, R.R; LIN, F.T; LEFKOWITZ, R.J; CARON, M.G. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature; 408: 720?23. 2000. CALIXTO JB, MEDEIROS R, FERNANDES ES, FERREIRA J, CABRINI DA, CAMPOS MM. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol.; 143:803-18, 2004. CAMARATA, P.J., YAKSH, T.L. Characterization of the spinal adrenergic receptors mediating the spinal effects produced by the microinjection of morphine into the periaqueductal gray. Brain Res. Jun 10;336(1):133?142, 1985. CAPIM, S.L; CARNEIRO, P.H.P; CASTRO, P.C; BARROS, M.R.M; MARINHO, B.G; VASCONCELLOS, M.L.A.A. Design, Prins-cyclization, reaction promoting diastereoselective synthesis of 10 new tetrahydropyran derivatives and in vivo antinociceptive evaluations. European Journal of Medicinal Chemistry. 58:1-11, 2012. CARLTON, S.M.; HARGETT, G.L.; COGGESHALL, R.E. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin. Neurosci. Lett., 197(1), (25-28), 1995. CHUNG, E; BURKE, B; BIEBER, A.J; DOSS, J.C; OHGAMI, Y; QUOCK, R.M. Dynorphinmediated antinociceptive effects of L-arginine and SIN-1 (an NO donor) in mice. Brain Res. Bull. 70: 245?250, 2006. COMMINS, S.P; BORISH, L; STEINKE, J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. The Journal of allergy and clinical immunology. 125(2 Suppl 2):S53-72., 2010. COSTANTINO, C. M; GOMES, I.; STOCKTON, S.D; LIM, M.P; DEVI, L.A. Opioid receptor heteromers in analgesia. Expert Rev Mol Med, v. 14, p. e9, 2012. CRUVINEL, W.M e cols. Sistema imunit?rio: Parte I. Fundamentos da imunidade inata com ?nfase nos mecanismos moleculares e celulares da resposta inflamat?ria. Rev. Bras. Reumatol., S?o Paulo , v. 50, n. 4, p. 434-447, Aug. 2010. CUNNEEN, J.; CARTWRIGHT, M. The puzzle of sepsis: fitting the pieces of the inflammatory response with treatment. AACN Clinical Issues, v. 15, n. 1, p. 18-44, 2004. CUNHA, T.M; ROMAN-CAMPOS, D; LOTUFO, C.M; DUARTE, H.L; SOUZA, G.R; VERRI, W.A., JR; FUNEZ, M.I; DIAS, Q.M; SCHIVO, I.R; DOMINGUES, A.C; SACHS, D; CHIAVEGATTO, S; TEIXEIRA, M.M; HOTHERSALL, J.S; CRUZ, J.S; CUNHA, F.Q; FERREIRA, S.H. Morphine peripheral analgesia depends on activation of the PI3K?/ AKT/nNOS/NO/KATP signaling pathway. Proc. Natl. Acad. Sci. USA 107:4442?4447, 2010. 56 CURY, Y; PICOLO, G; GUTIERREZ, V.P; FERREIRA, S.H. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide 25: 243?254, 2011. D?AMOUR, F.E; SMITH, D.L. A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther., 72: 74?79, 1941. DAWSON, J.; SEDGWICK, A. D.; EDWARDS, J. C.; LEES, P. A comparative study of the cellular, exudative and histological responses to carrageenan, dextran and zymosan in the mouse. International Journal of Tissue Reactions, v. 13, n. 4, p. 171? 185, 1991. DICKENSON, A.H.; SULLIVAN, A.F. Evidence for a role of the NMDA receptor in the frequency dependent potentiaton of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology, v.26, n. 8, p. 1235-1238, 1987. DI ROSA, M.; GIROUD, J. P.; WILLOUGHBY, D. A. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. Journal of Pathology, Amsterdam, v. 104, n. 1, p. 15-29, 1971. DUARTE, I.D; LORENZETTI, B.B; FERREIRA, S.H. Peripheral analgesia and activation of the nitric oxide?cyclic GMP pathway. Eur. J. Pharmacol. 186: 289?293, 1990. DUARTE, D.B.; VASKO, M.R.; FEHRENBACHER, J.C. Models of inflammation: carrageenan air pouch. Current protocols in pharmacology. v. 56, p. 561-568, 2012. FEIN, A. Nociceptores: As c?lulas que sentem dor. Petrov P, Francischi JN, Ferreira SH, et al. tradutores. Ribeir?o Preto ? SP: Dor On Line; 2011. 106 p. Disponivel em: http://www.dol.inf.br/nociceptores Acessado em 30 de Mar?o de 2015. FENG, Y.; XIAOZHOU, H.; YANG, Y.; CHAO, D.; LAZARUS, L.H.; XIA, Y. Current research on opioid receptor function. Curr Drug Targets, v. 13, n. 2, p. 230-46, 2012. FELIPINI, R.C. V?deo de Inflama??o Aguda ? UNESP. Departamento de Patologia e Proped?utica Cl?nica, 2013. Dispon?vel em: <https://www.youtube.com/watch?v=gqCIIpHIfqw>. Acesso em: 10 fev.2016. FERREIRA, S.H; VAN ARMAN, C.G. Oedema and increased vascular permeability. In: Vane JR, Van Arman CG, editors. Handbook of experimental pharmacology. New York 7 Springer-Verlag; p. 75-91, 1979. FERREIRA, S.H. A classification of peripheral analgesics based upon their mode of action. Oxford: Oxford University Press, 1990. FERREIRA, A.A; AMARAL, F.A; DUARTE, I.D.G; OLIVEIRA, P.M; ALVES, R.B; SILVEIRA, D; AZEVEDO, A.O; RASLAN, D.S; CASTRO, M.S.A. 57 Antinociceptive effect from Ipomoea cairica extract. J. Ethnopharmacol; 105: 148?53. 2006. FERREIRA, S.H; FERRARI, L.F; CUNHA, T.M; NASCIMENTO, P.G.B.D; JUNIOR, W.A.V; CUNHA, F.Q. Dor: Pr?ncipios e Pr?tica. Cap?tulo 19: Dor Inflamat?ria. 2010. Dispon?vel em: < http://dol.inf.br/Html/DorInflamatoria.html>. Acesso em: 2 set. 2016. FISCHER, L.G.; SANTOS, D.; SERAFIN, C.; MALHEIROS, A.; MONACHE, F.D.; MONACHE, G.D.; FILHO, V.C.; SOUZA, M.M. Further Antinociceptive Properties of Extracts and Phenolic Compounds from Plinia glomerata (Myrtaceae) Leaves. Biol. Pharm. Bull. 31(2) 235?239, 2008. FITZGERALD, G.A; RICCIOTTI, E. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol.; 31(5): 986?1000, 2011. F?RSTERMANN, U; SESSA, W.C. Nitric oxide synthases: regulation and function.European Heart Journal 33, 829?837, 2012. FRANCISCHETTI, I; MORENO, J.B; SCHOLZ, M; YOSHIDA, W.B. Leukocytes and the inflammatory response in ischemia-reperfusion injury. Rev Bras Cir Cardiovasc.; 25(4): 575-584, 2010. FRENZEL, L; HERMINE, O. Mast cells and inflammation. Joint Bone Spine 80: 141-145, 2013. GREGORIAN, R.S., JR.; GASIK, A.; KWONG, W.J; VOELLER, S.; KAVANAGHZ, S. Importance of Side Effects in Opioid Treatment: A Trade-Off Analysis With Patients and Physicians. The Journal of Pain, Vol 11, No 11: pp 1095-1108, 2010. GREGORY, N.S; HARRIS, A.L; ROBINSON, C.R; DOUGHERTY, P.M, FUCHS, P.N, SLUKA, K.A. An overview of animal models of pain: disease models and outcome measures. J Pain. doi:10.1016/j.jpain.2013.06.008. November; 14(11), 2013. GRELLNER, W. Time-dependent imunohistochemicaldetection of pro-inflammatory cytokines (IL-1, IL-6, TNF) in human skin wounds. Forens Sci. Int., v. 130, n. 2-3, p. 90-96, 2002. GUGINSKI, G; LUIZ, A.P; SILVA, M.D; MASSARO, M; MARTINS, D.F; CHAVES, J; MATTOS, R.W; SILVEIRA, D; FERREIRA, V.M; CALIXTO, J.B; SANTOS, A.R. Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of Melissa officinalis (lemon balm) in mice. Pharmacol. Biochem. Behav. 93:10?16, 2009. GUILHON, C.C; RAYMUNDO, L.J.R.P; ALVIANO, D.S; BLANK, A.F; ARRIGONI-BLANK, M.F; CAVALCANTI, S.C; ALVIANO, C.S; FERNANDES, P.D. Characterisation of the anti-inflammatory and antinociceptive activities and mechanism of the action of Lippia gracilis essential oil. Journal Ethnopharmacology, v. 135, p. 406-413, 2011. 58 GUTIERREZ, V; ZAMBELLI, V; PICOLO, G; CHACUR, M; SAMPAIO, S; BRIGATTE, P; CURY, Y. Peripheral L-arginine-nitric oxide-cGMP pathway and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine on neuropathic pain in rats. Behav. Pharmacol., (1):14-24, 2012. HALLEGUA, D.S; WEISMAN, M.H. Potential therapeutic uses of interleukin1receptor antagonists in human diseases. Ann Rheum; 61: 960?967. 2002. HAN, J.; KIM, N.; KIM, E.; HO, W.K; EARM, Y.E. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J. Biol. Chem., v.276, n. 25, p. 22140-22147, 2001. HERVERA, A; LEANEZ, S; NEGRETE, R; POL, O. The peripheral administration of a nitric oxide donor potentiates the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice. Naunyn Schmiedebergs Arch. Pharmacol 380: 345?352, 2009. HUNSKAAR, S; HOLE, K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30: 103?14, 1987. JAIN, M.; PARMAR, H.S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflammation research. v.60, p. 483-491, 2011. JAVANMARDI, K, M; PARVIZ, S.S; SADR, M; KESHAVARZ, B; MINAII; DEHPOUR, A.R. Involvement of N-methyl-D-aspartate receptors and nitric oxide in the rostral ventromedial medulla in modulating morphine pain-inhibitory signals from the periaqueductal grey matter in rats. Clin. Exp. Pharmacol. Physiol. 32: 585?589, 2005. KELLEY, N.E; TEPPER, D.E. Rescue therapy for acute migraine, part 3: opioids, NSAIDs, steroids, and post-discharge medications. Headache.;52(3):467-82, 2012. KOSTER, R; ANDERSON, M; DE BEER, EJ. Acetic acid for analgesic screening. Federation Proceedings. v. 18, p. 412, 1959. LAW, B.K.; WALTNER-LAW, M.E; ENTINGH, A.J.; CHYTIL, A; AAKRE, M.E.; N?RGAARD, P.; MOSES, H.L. Salicylate-induced growth arrest is associated with inhibition of p70s6K and down-regulation of c-myc, cyclin D1, cyclin A, and proliferating cell nuclear antigen. J. Biol. Chem., v.275, n.49, p. 38261-38267, 2000. LE BARS, D., GOZARIU, M., CADDEN, S. Animal models of nociception. Pharmacological Reviews, v. 53, p. 628-651, 2001. LESNIAK, A.; LIPKOWSKI, A. W. Opioid peptides in peripheral pain control. Acta Neurobiol Exp (Wars), v. 71, n. 1, p. 129-38, 2011. 59 LOESER, J. D.; TREEDE, R. D. The Kyoto protocol of IASP Basic Pain Terminology. Pain, v. 137, n. 3, p. 473-477, Jul 31 2008. LOISA, P.; RINNE, T.; LAINE, S.; HURME, M.; KAUKINEN, S. Anti-inflammatory cytokine response and the development of multiple organ failure in severe sepsis. Acta Anaesthesiologica Scandinavica, v. 47, n. 3, p. 319-325, 2003. LORKE, D. A new approach to practical acute toxicity testing. Arch. Toxicol; 54: 275?87. 1983. LOZANO-CUENCA, J.; CASTANEDA-HERNANDEZ, G.; GRANADOS-SOTO, V. Peripheral and spinal mechanisms of antinociceptive action of lumiracoxib. Eur. J. Pharmacol. 513: 81?91, 2005. MARINHO, B.G; MIRANDA, L.S.M.; GOMES, N.M.; MATHEUS, M.E.; LEIT?O, S.G.; VASCONCELLOS, M.L.A.A.; FERNANDES, P.D. Antinociceptive action of (?)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid in mice. European Journal of Pharmacology. 550: 47-53, 2006. MARTINS, R.T.; ALMEIDA, D.B.; MONTEIRO, F.M.R.; KOZACS, P.A.; RAMINA, R. Opioid receptors to date. Rev Dor. S?o Paulo, 13(1):75-9, 2012. MATSUKAWA, A.; HOGABOAM, C.M.; LUKACS, N.W.; LINCOLIN, P.M.; EVANOFF, H.L.; KUNKEL, S.L. Pivotal role of the CC chemokine, macrophage derived chemokine, in the innate immune response. Journal of Immunology, Boston, v.164, p.5362?5368, 2000. M?ZAK, K.; HOSZTAFI, S.; R?CZ. ?.; NOSZ?L, B. Structural and physicochemical profiling of morphine and related compounds of therapeutic interest. Mini-reviews in Med. Chem., v.9, p. 984-995, 2009. MCNAMARA CR, MANDEL-BREHM J, BAUTISTA DM, SIEMENS J, DERANIAN KL, ZHAO M, HAYWARD NJ, CHONG JA, JULIUS D, MORAN MM, FANGER CM. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. U. S. A. ; 104: 1352?3530. 2007. MENEGAZZI, M; DI PAOLA, R; MAZZON, E; GENOVESE, T; CRISAFULLI, C; DAL BOSCO, M; ZOU, Z; SUZAKI, H; CUZZOCREA S. Glycyrrhizin attenuates the development of carrageenan-induced lung injury in mice. Pharmacol Res; 58: 22?31. 2008. MERRER,J.L.; JECKER, J.A.; BEFORT, K.; KIEFFER, B.L. Reward processing by the opioid system in the brain. Physiol Rev. Oct;89(4):1379-412, 2009. MILANO, J; OLIVEIRA, S.M; ROSSATO, M.F; SAUZEM, P.D; MACHADO, P; BECK, P; ZANATTA, N; MARTINS, M.A.P; MELLO, C.F; RUBIN, M.A; FERREIRA, J; BONACORSO, H.G. Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. Eur. J. Pharmacol; 581: 86?96. 2008. 60 MILLAN, M.J. The induction of pain: an integrative review. Prog. Neurobiol, v. 57, p. 161-164, 1999. MILLAN, M.J. Descending control of pain. Prog. Neurobiol. 66:355?474, 2002. MILLER, R.J. Presynaptic receptors. Annu Rev Pharmacol Toxicol; 38: 201?27. 1998. MOHAMAD, A. S.; AKHTAR, M. N.; ZAKARIA, Z. A.; PERIMAL, E.K.; KHALID, S.; MOHD, P. A.; KHALID, M. H.; ISRAF, D. A.; LAJIS, N. H.; SULAIMAN, M. R. Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice. European Journal of Pharmacology. v. 647, n. 1 ? 3, p. 103 ? 109, 2010. NAPIMOGA, C.J.T; PELLEGRINI-DA-SILVA, A; FERREIRA, V.H; NAPIMOGA, M.H; PARADA, C.A; TAMBELI, C.H. Gonadal hormones decrease temporomandibular joint kappa-mediated antinociception through a down-regulation in the expression of kappa opioid receptors in the trigeminal ganglia. Eur. J. Pharmacol. 617: 41?47, 2009. NESS, T.J., GEBHART, G.F. Visceral pain: a review of experimental studies. Pain 41:167?234, 1990. NUGTEREN, D.H; HAZELHOF, E. Isolation and properties of intermediates in prostaglandin biosynthesis. Biochim. Biophys. Acta. 326: 448-461. 1973. OCANA, M; CENDRAN, C.M; COBOS, E.J; ENTRENA, J.M; BAEYENS, J.M. Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol; 500: 203?19. 2004. OLIVEIRA, F.S.; SOUSA, D.P.; ALMEIDA, R.N. Antinociceptive effect of hydroxydihydrocarvone. Biol Pharm Bull 31(4): 588 ? 591, 2008. OSSIPOV, M.H.; LAI J, VANDERAH, T.W.; PORRECA, F. Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance. Life Sciences, v. 73, p.783-800, 2003. PAN, Z.Z; TERSHNER, S.A; FIELDS, H.L. Cellular mechanism for anti-analgesic action of agonists of the kappa-opioid receptor. Nature; 389: 382?5. 1997. PARADA, C.A; TAMBELI, C.H; CUNHA, F.Q; FERREIRA, S.H. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience; 102: 937?44. 2001. PARVEEN, Z.; DENG, Y.; SAEED, M.K.; DAI, R.; AHAMAD, W.; YU, Y.H. Antiinflammatory and analgesic activities of Thesium chinese Turcz extracts and its major flavonoids, kaampferol and kaempferol-3-O-glucoside. Yakugaku Zasshi, v.127, p.1275-1279, 2007. 61 RAJA, S.; MEYER, R.A.; RINCKAMP, M.; CAMPBELL, J.N. Peripheral neural mechanism of nociception. In WALL, P.D.; MELZACK, R. (Eds). Textbook of pain. Ediburgh: Churchill Livingstone, p. 11-57, 1999. RAMANA, K.V.; TAMMALI, R.; REDDY, A.B.M.; BHATNAGAR, A.; SRIVASTAVA, S.K.; Aldose Reductase-Regulated Tumor Necrosis Factor- ? Production Is Essential for High Glucose-Induced Vascular Smooth Muscle Cell Growth. Endocrinology. 148, n. 9, 4371-4384, 2007. ROBBINS & COTRAN. Patologia: Bases patol?gicas das doen?as. 8? Edi??o. Rio de Janeiro: Elsevier, 2010. 1458 p. ROCHA APC, KRAYCHETE DC, LEMONICA L, CARVALHO LR, BARROS GAM, GARCIA JBS, SAKATA RK ? Pain: Current Aspects on Peripheral and Central Sensitization. Rev Bras Anestesiol Review article 57: 1: 94-105, 2007. SACHS, D.; CUNHA, F.Q.; FERREIRA, S.H. Peripheral analgesic blockade of hypernociception: activation of arginine/NO/cGMP/protein kinase G/ATP-sensitive K+ channel pathway. Proc. Natl. Acad. Sci. USA, v. 101, n. 10, p. 3680-3685, 2004. SCHRAMM, R; THORLACIUS, H. Neutrophil recruitment in mast cell-dependent inflammation inhibitory mechanisms of glucocorticoids. Inflammation research, v.53 (12), p. 644-652, 2004. SCHULTZ, J.; GROSS, G. Opioids and cardioprotection. Pharmac. Ther., v.89, p. 123-137, 2001. SILVA, J.C; SARAIVA, S.R; OLIVEIRA, R.G; ALMEIDA, J.R. Experimental models for evaluation of antinociceptive activity of natural products: a review. Rev. Bras. Farm. 94 (1): 18-23, 2013. SOARES, A.C; LEITE, R; TATSUO, M.A; DUARTE, I.D. Activation of ATP-sensitive K+ channels: mechanism of peripheral antinociceptive action of the nitric oxide donor, sodium nitroprusside. Eur. J. Pharmacol. 400: 67?71, 2000. SOARES, A.C; DUARTE, I.D. Dibutyryl-cyclic GMP induces peripheral antinociception via activation of ATP-sensitive K+ channels in the rat PGE2-induced hyperalgesic paw, Br. J. Pharmacol. 134: 127?131, 2001. SOJA, P. J.; TAEPAVARAPRUK, N.; PANG, W.; CAIRNS, B. E.; MCERLANE, S. A.; FRAGOSO, M. C. Transmission through the dorsal spinocerebellar and spinoreticular tracts: wakefulness versus thiopental anesthesia. Anesthesiology, v. 97, n. 5, p. 1178-88, 2002. SOMMER, C. Serotonin in Pain and Analgesia - Actions in the Periphery. Molecular Neurobiology, v. 30, p. 117-125, 2004. 62 STAROWICZ, K; OBARA, I; PRZEWLOCKI, R; PRZEWLOCKA, B. Inhibition of morphine tolerance by spinal melanocortin receptor blockade. Pain; 117: 401?11. 2005. STEIN, C.; CLARK, J.D.; VASKO, M.R.; WILCOX, G.L.; OVERLAND, A.C.; VANDERAH, T.W.; SPENCER, R.H. Peripheral mechanisms of pain and analgesia. Brain Res Rev. 2009 Apr;60(1):90-113, 2009. SU, X; JOSHI, S.K; KARDOS, S; GEBHART, G.F. Sodium channel blocking actions of the kappaopioid receptor agonist U50,488 contribute to its visceral antinociceptive effects. J Neurophysiol; 87: 1271?9. 2002. SU, X; CASTLE, N.A; ANTONIO, B; ROELOFFS, R; THOMAS, J.B; KRAFTE, D.S; et al. The effect of kappa-opioid receptor agonists on tetrodotoxin-resistant sodium channels in primary sensory neurons. Anesth Analg; 109: 632?40. 2009. THEOHARIDES, T.C; ALYSANDRATOS, K.D; ANGELIDOU, A; DELIVANIS, D.A; SISMANOPOULOS, N; ZHANG, B; ASADI, S; VASIADI, M; WENG, Z; MINIATI, A; KALOGEROMITROS, D. Mast cells and inflammation. Biochimica et Biophysica Acta 1822, 21?33, 2012. THOMAZZI, S. M.; SILVA, C. B.; SILVEIRA, D. C. R.; VASCONCELLOS, C. L. C.; LIRA, A. F.; CAMBUI, E. V. F.; ESTEVAM, C. S.; ANTONIOLLI, A. R. Antinociceptive and anti-inflammatory activities of Bowdichia virgilioides (sucupira). Journal of Ethnopharmacology, v. 127, p. 451 - 456, 2010. TORNOS, M.P; S?ENZ, M.T; GARCIA, M.D; FERN?NDEZ, M.A. Antinociceptive effects of the tubercles of Anredera leptostachys. J. Ethnopharmacol; .68: 229?34. 1999. VANDERAH, T.W. Delta and kappa opioid receptors as suitable drug targets for pain. Clin J Pain; 26: 10?5. 2010. VARGA, E.V.; YAMAMURA, H.I; RUBENZIK, M.K.; STROPOVA, D.; NAVRATILOVA, E.; ROESKE, W.R. Molecular mechanisms of excitatory signaling upon chronic opioid agonist treatment. Life Sciences, v. 74, p. 299-311, 2003. VERRI, W.A; CUNHA, T.M; PARADA, C.A; POOLE, S; CUNHA, F.Q; FERREIRA, S.H. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. Oct;112(1):116-38, 2006. VIGIL, S.V.G; DE LIZ, R.; MEDEIROS, Y.S.; FR?DETS. Efficacy of tacrolimus in inhibiting inflammation caused by carrageenan in a murine model of air pouch. Transpl Immunol; 19:25-29, 2008. VOSCOPOULOS, C.; LEMA, M.; When does acute pain become chronic? Br J Anaesth, v. 105 Suppl 1, p. i69-i85. ISSN 0007-0912, 2010. 63 WINTER, C. A.; RISLEY, E. A.; NUSS, G. W. Carrageenin-induced edema in hind paw of the ratas an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med, v. 111, p. 544-547, 1962. ZHOU, S.; BONASERA, L.; CARLTON, S.M. Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats. Neuroreport, 7(4), 895-900.), 1996. ZHU, Z. Z.; MA, K. J.; RAN, X.; ZHANG, H.; ZHENG, C. J.; HAN, T.; ZHANG, Q. Y.; QIN, L. P. Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from the ethanol extract of Desmodium podocarpum. Journal of Ethnopharmacology. v. 133, n. 3, p. 1126 ? 1131, 2011

Page generated in 0.008 seconds