Return to search

Deep Learning for Anomaly Detection in Microwave Links : Challenges and Impact on Weather Classification / Djupinlärning för avvikelsedetektering i mikrovågslänkar : Utmaningar och inverkan på väderklassificering

Artificial intelligence is receiving a great deal of attention in various fields of science and engineering due to its promising applications. In today’s society, weather classification models with high accuracy are of utmost importance. An alternative to using conventional weather radars is to use measured attenuation data in microwave links as the input to deep learning-based weather classification models. Detecting anomalies in the measured attenuation data is of great importance as the output of a classification model cannot be trusted if the input to the classification model contains anomalies. Designing an accurate classification model poses some challenges due to the absence of predefined features to discriminate among the various weather conditions, and due to specific domain requirements in terms of execution time and detection sensitivity. In this thesis we investigate the relationship between anomalies in signal attenuation data, which is the input to a weather classification model, and the model’s misclassifications. To this end, we propose and evaluate two deep learning models based on long short-term memory networks (LSTM) and convolutional neural networks (CNN) for anomaly detection in a weather classification problem. We evaluate the feasibility and possible generalizations of the proposed methodology in an industrial case study at Ericsson AB, Sweden. The results show that both proposed methods can detect anomalies that correlate with misclassifications made by the weather classifier. Although the LSTM performed better than the CNN with regards to top performance on one link and average performance across all 5 tested links, the CNN performance is shown to be more consistent. / Artificiell intelligens har fått mycket uppmärksamhet inom olika teknik- och vetenskapsområden på grund av dess många lovande tillämpningar. I dagens samhälle är väderklassificeringsmodeller med hög noggrannhet av yttersta vikt. Ett alternativ till att använda konventionell väderradar är att använda uppmätta dämpningsdata i mikrovågslänkar som indata till djupinlärningsbaserade väderklassificeringsmodeller. Detektering av avvikelser i uppmätta dämpningsdata är av stor betydelse eftersom en klassificeringsmodells pålitlighet minskar om träningsdatat innehåller avvikelser. Att utforma en noggrann klassificeringsmodell är svårt på grund av bristen på fördefinierade kännetecken för olika typer av väderförhållanden, och på grund av de specifika domänkrav som ofta ställs när det gäller exekveringstid och detekteringskänslighet. I det här examensarbetet undersöker vi förhållandet mellan avvikelser i uppmätta dämpningsdata från mikrovågslänkar, och felklassificeringar gjorda av en väderklassificeringsmodell. För detta ändamål utvärderar vi avvikelsedetektering inom ramen för väderklassificering med hjälp av två djupinlärningsmodeller, baserade på long short-term memory-nätverk (LSTM) och faltningsnätverk (CNN). Vi utvärderar genomförbarhet och generaliserbarhet av den föreslagna metodiken i en industriell fallstudie hos Ericsson AB. Resultaten visar att båda föreslagna metoder kan upptäcka avvikelser som korrelerar med felklassificeringar gjorda av väderklassificeringsmodellen. LSTM-modellen presterade bättre än CNN-modellen både med hänsyn till toppprestanda på en länk och med hänsyn till genomsnittlig prestanda över alla 5 testade länkar, men CNNmodellens prestanda var mer konsistent.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-276676
Date January 2020
CreatorsEngström, Olof
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2020:111

Page generated in 0.0025 seconds