Le milieu interstellaire (MIS) où se forment les étoiles est constitué de gaz très dilué dominé par l'hydrogène moléculaire, et de grains de poussière de taille submicrométrique. Ces poussières jouent un rôle crucial en atténuant la lumière des étoiles lointaines, protégeant ainsi les molécules du gaz des rayonnements ultra-violets, et en servant de catalyseurs à une chimie hétérogène à très basse température. Outre la synthèse de l'hydrogène moléculaire, la surface des grains permet de former des molécules organiques dites complexes comme le méthanol (CH3OH) à partir de l'hydrogénation (et la deutération) du monoxyde de carbone (CO). Les glaces ainsi formées participent à la complexification moléculaire du MIS et seront à terme intégrées au sein de disques de poussières, berceaux des astéroïdes, comètes et exo-planètes. L'objectif de cette thèse est l'étude des mécanismes d'échanges hydrogène-deuterium sur certains groupements fonctionnels de molécules organiques simples, méthanol par exemple, présentes à la surface ou dans les manteaux des grains interstellaires. La thèse est centrée sur une exploration expérimentale de ces processus en phase condensée, à l'aide d'une expérience de cryogénie synthétisant des glaces à très basse température (15K) couplée à un spectromètre infrarouge. Nous montrons que ces échanges se produisent avant la sublimation du manteau de glace sur des groupes fonctionnels capables d'établir des liaisons hydrogènes avec les molécules d'eau voisines. Le processus catalysant est vraisemblablement la cristallisation de la glace d'eau. Des études cinétiques nous permettent d'évaluer les énergies d'activation du transfert H/D (6745K) et de la transition amorphe-cristalline (8100K), et de déterminer la constante de vitesse d'échange dans le domaine de température 120-140~K. Cette constante de vitesse est, de plus, comparée à des calculs semi-classiques basés sur un traitement ab initio. En marge de ces expériences, des observations millimétriques de la molécule de méthanol en direction de proto-étoiles confirment une variabilité des abondances relatives des isotopologues simplement deutérés de cette molécule en fonction de la masse de la protoétoile. / The interstellar medium where stars are formed consists of a dilute gas which is dominated by molecular hydrogen and dust grains less than a few microm in size. The dust plays a crucial role in the attenuation of light from the stars. They also protect molecules within the gas from UV photons. Furthermore, they serve as heterogeneous catalysts for chemistry at low temperature. The surface of the grains also permit the formation of complex organic molecules such as methanol via the hydrogenation and/or deuteration of carbon monoxide. The ices are formed and subsequently participate in increasing the molecular complexity of the clouds. Finally, they are incorporated into debris disks, asteroids, comets, and exoplanets. The objective of this thesis is to study the mechanism of hydrogen/deuterium exchange within certain functionnal groups of simple organic molecules such as methanol, which are present on the surface of these grain mantles. The thesis is focused on the experimental determination of these processes in the condensed phase. This will be achieved with the aid of a cryogenic synthesis of the ices at very low temperatures coupled with infrared spectrometry. We observe that it is possible for the exchange to proceed before the sublimation of the ice mantles. However, this is only the case when the functional groups within the molecule may form hydrogen bonds with water. From our results we see that this process seems to be catalysed by the crystalization of the water ice. The kinetics study permits us to evalute the activation energy for the H/D exchange (6745 K) and for the transition from amorphous to crystaline ice (8100 K). In addition it also allows us to determine the rate constant for the exchange in the temperature range 120-140 K. In addition we have performed theoretical calulation in an attempt to elucidate the mechanism for the exchange. However, the experimental rate constant for the exchange is much larger in comparison to the one predicted by a semi- classical treatment based on the AB initio potential we have obtained. Further to this observations of methanol towards protostars have been conducted. These observations show that there is a variation in the relative abundance of the CH2DOH and CH3OD. This variation in relative abundance seems to have some dependence upon the mass of the protostar, with high mass stars showing (CH2DOH/CH3OD ≤ 1) and low/intermiediate mass stars showing (CH2DOH/CH3OD >> 3).
Identifer | oai:union.ndltd.org:theses.fr/2012GRENY014 |
Date | 08 March 2012 |
Creators | Ratajczak, Alexandre |
Contributors | Grenoble, Faure, Alexandre, Quirico, Éric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds