Les travaux réalisés au cours cette thèse ont eu comme objectif l’étude de l’interaction de la lumière polarisée avec des milieux et des particules diffusants. Ces travaux s’inscrivent dans un contexte collaboratif fort entre le LPICM et différents laboratoires privés et publics. Des aspects très variées ont été traités en profondeur dont le développement instrumental, la simulation numérique avancée et la création de protocoles de mesure pour l’interprétation de donnés à caractère complexe.La partie instrumentale de la thèse a été consacrée au développement d’un instrument novateur, adapté à la prise d’images polarimétriques à différents échelles (du millimètre au micron) pouvant être rapidement reconfigurable pour offrir différents modes d’imagerie du même échantillon. Les deux aspects principaux qui caractérisent l’instrument sont i) la possibilité d’obtenir des images polarimétriques réelles de l’échantillon et des images de la distribution angulaire de lumière diffusé par une zone sur l’échantillon dont sa taille et position peuvent être sélectionnée par l’utilisateur à volonté, ii) le contrôle total de l’état de polarisation, de la taille et de la divergence des faisceaux utilisés pour l’éclairage de l’échantillon et pour la réalisation des images de celui-ci. Ces deux aspects ne se trouvent réunis sur aucun autre appareil commercial ou expérimental actuel.Le premier objet d’étude en utilisant le polarimètre imageur multimodal a été l’étude de l’effet de l’épaisseur d’un milieu diffusant sur sa réponse optique. En imagerie médicale il existe un large consensus sur les avantages de l’utilisation de différentes propriétés polarimétriques pour améliorer l’efficacité de techniques optiques de dépistage de différentes maladies. En dépit de ces avantages, l’interprétation des observables polarimétriques en termes de propriétés physiologiques des tissus se trouve souvent obscurcie par l’influence de l’épaisseur, souvent inconnue, de l’échantillon étudié.L’objectif des travaux a été donc, de mieux comprendre la dépendance des propriétés polarimétriques de différents matériaux diffusants avec l’épaisseur de ceux-ci. En conclusion, il a été possible de montrer que, de manière assez universelle, les propriétés polarimétriques des milieux diffusants varient proportionnellement au chemin optique que la lumière a parcouru à l’intérieur du milieu, tandis que le dégrée de polarisation dépend quadratiquement de ce chemin. Cette découverte a pu être ensuite utilisée pour élaborer une méthode d’analyse de données qui permet de s’affranchir de l’effet des variations d’épaisseur des tissus, rendant ainsi les mesures très robustes et liées uniquement aux propriétés intrinsèques des échantillons étudiés.Un deuxième objet d’étude a été la réponse polarimétrique de particules de taille micrométrique. La sélection des particules étudiées par analogie à la taille des cellules qui forment les tissus biologiques et qui sont responsables de la dispersion de la lumière. Grâce à des mesures polarimétriques, il a été découvert que lorsque les microparticules sont éclairées avec une incidence oblique par rapport à l’axe optique du microscope, celles-ci semblent se comporter comme si elles étaient optiquement actives. D’ailleurs, il a été trouvé que la valeur de cette activité optique apparente dépend de la forme des particules étudiées. L’explication de ce phénomène est basée sur l’apparition d’une phase topologique dans le faisceau de lumière. Cette phase topologique dépend du parcours de la lumière diffusée à l’intérieur du microscope. L’observation inédite de cette phase topologique a été possible grâce au fait que l’imageur polarimétrique multimodale permet un éclairage des échantillons à l’incidence oblique. Cette découverte peut améliorer significativement l’efficacité de méthodes optiques pour la détermination de la forme de micro-objets. / The work carried out during this thesis was aimed to study the interaction of polarized light from the scattering media and particles. This work is part of a strong collaborative context between the LPICM and various private and public laboratories. A wide variety of aspects have been treated deeply, including instrumental development, advanced numerical simulation and the creation of measurement protocols for the interpretation of complex data.The instrumental part of the thesis was devoted to the development of an innovative instrument, suitable for taking polarimetric images at different scales (from millimeters to microns) that can be quickly reconfigured to offer different imaging modes of the same sample. The two main aspects that characterize the instrument are i) the possibility of obtaining real polarimetric images of the sample and the angular distribution of light scattered by an illuminated zone whose size and position can be controlled, ii) the total control of the polarization state, size and divergence of the beams. These two aspects are not united on any other commercial or experimental apparatus today.The first object of the study using the multimodal imaging polarimeter was to study the effect of the thickness from a scattering medium on its optical response. In medical imaging, there is a broad consensus on the benefits of using different polarimetric properties to improve the effectiveness of optical screening techniques for different diseases. Despite these advantages, the interpretation of the polarimetric responses in terms of the physiological properties of tissues has been obscured by the influence of the unknown thickness of the sample.The objective of the work was, therefore, to better understand the dependence of the polarimetric properties of different scattering materials with the known thickness. In conclusion, it is possible to show that the polarimetric properties of the scattering media vary proportionally with the optical path that the light has traveled inside the medium, whereas the degree of polarization depends quadratically on the optical path. This discovery could be used to develop a method of data analysis that overcomes the effect of thickness variations, thus making the measurements very robust and related only to the intrinsic properties of the samples studied.The second object of study was to study the polarimetric responses from particles of micrometric size. The selection of the particles studied by analogy to the size of the cells that form the biological tissues, and which are responsible for the dispersion of light. By means of the polarimetric measurements, it has been discovered that when the microparticles are illuminated with an oblique incidence with respect to the optical axis of the microscope, they appear to behave as if they were optically active. Moreover, it has been found that the value of this apparent optical activity depends on the shape of the particles. The explanation of this phenomenon is based on the appearance of a topological phase of the beam. This topological phase depends on the path of the light scattered inside the microscope. The unprecedented observation of this topological phase has been done by the fact that the multimodal polarimetric imager allows illumination of the samples at the oblique incidence. This discovery can significantly improve the efficiency of optical methods for determining the shape of micro-objects.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLX106 |
Date | 10 December 2018 |
Creators | Yoo, Thomas |
Contributors | Université Paris-Saclay (ComUE), Ossikovski, Razvigor, Garcia-Caurel, Enrique |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0093 seconds