• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approche matricielle de l'imagerie optique des milieux diffusants / A matrix approach for optical imaging in highly scattering media

Badon, Amaury Axel 20 December 2016 (has links)
L’objectif des travaux présentés dans cette thèse est d’étudier la propagation de la lumière dans les milieux inhomogènes afin de repousser les limites actuelles de l’imagerie : les aberrations et la diffusion multiple. Dans une première partie, nous avons associé les outils et le formalisme initialement développés pour les ondes ultrasonores aux techniques propres à l’optique. Grâce à un dispositif expérimental innovant, nous avons enregistré les réponses d’un milieu complexe pour une collection de champs incidents, formant ainsi une matrice de réflexion. Une étude des corrélations spatiales de cette matrice permet alors de séparer les contributions de diffusion simple et multiple. Alors que la première permet de former une image seulement limitée par la diffraction d’un objet enfoui au sein du milieu, la seconde permet de caractériser les paramètres de transport de la lumière dans le milieu.La seconde partie de ma thèse s’est intéressée à la possibilité d’extraire une information cohérente à partir d’un champ aléatoire. Il a été démontré, en acoustique et en sismologie notamment, que la corrélation d’un champ incohérent mesuré en deux points permettait d’estimer la réponse impulsionnelle entre ces deux mêmes points. Dans ma thèse, nous avons étendu cette approche aux ondes optiques. En particulier nous avons démontré la mesure de réponses impulsionnelles entre des diffuseurs individuels à l’aide d’une simple lampe halogène et d’un montage interférométrique. A la suite de cette preuve de principe, nous avons réalisé des estimations de paramètres de transport pour des milieux fortement diffusants. / My thesis was devoted to the study of the propagation of optical waves in inhomogeneous media in an attempt to push back the fundamental limits of optical imaging: multiple scattering and aberrations. In a first part, we combined the tools and the formalism developed initially for acoustic waves with techniques peculiar to the field of optics. Thanks to a system that allows to both control and measure the optical field, we record the output responses of a scattering medium for a given set of input fields. This collection of input-output responses forms a matrix called the reflection matrix. We then exploit the spatial and temporal contents of this matrix to discriminate the ballistic and the multiple scattered light. The first contribution provides an image with a diffraction limited resolution of an object placed behind or embedded in a turbid medium, while the second contribution offers information on the transport of light in the diffusive regime.The second study was dedicated to the measurement of a coherent information from a totally incoherent source. It has been shown in acoustics and seismology that correlations of an In my thesis, we extended this property to optical waves. In particular, we demonstrated the measurement of an impulse response between individual scatterers with a femtosecond resolution using a simple halogen white light source. Following this proof of principle, the characterization of the transport properties of a medium was performed from a collection of impulse responses in the diffusive regime.
2

Earthquake ground-motion in presence of source and medium heterogeneities

Vyas, Jagdish Chandra January 2017 (has links)
This dissertation work investigates the effects of earthquake rupture complexity and heterogeneities in Earth structure on near-field ground-motions. More specifically, we address two key issues in seismology: (1) near-field ground-shaking variability as function of distance and azimuth for unilateral directive ruptures, and (2) impact of rupture complexity and seismic scattering on Mach wave coherence associated with supershear rupture propagation. We examine earthquake ground-motion variability associated with unilateral ruptures based on ground-motion simulations of the MW 7.3 1992 Landers earthquake, eight simplified source models, and a MW 7.8 rupture simulation (ShakeOut) for the San Andreas fault. Our numerical modeling reveals that the ground-shaking variability in near-fault distances (< 20 km) is larger than that given by empirical ground motion prediction equations. In addition, the variability decreases with increasing distance from the source, exhibiting a power-law decay. The high near-field variability can be explained by strong directivity effects whose influence weaken as we move away from the fault. At the same time, the slope of the power-law decay is found to be dominantly controlled by slip heterogeneity. Furthermore, the ground-shaking variability is high in the rupture propagation direction whereas low in the directions perpendicular to it. However, the variability expressed as a function of azimuth is not only sensitive to slip heterogeneity, but also to rupture velocity. To study Mach wave coherence for supershear ruptures, we consider heterogeneities in rupture parameters (variations in slip, rise time and rupture speed) and 3D scattering media having small-scale random heterogeneities. The Mach wave coherence is reduced at near-fault distances (< 10 km) by the source heterogeneities. At the larger distances from the source, medium scattering plays the dominant role in reducing the Mach wave coherence. Combined effect of the source and medium heterogeneities on the supershear ruptures produce peak ground accelerations consistent with the estimates from empirical ground motion prediction equations. Therefore, we suggest that supershear ruptures may be more common in nature than detected.
3

3D Reconstruction in Scattering Media / 散乱媒体下での三次元復元

Fujimura, Yuki 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23312号 / 情博第748号 / 新制||情||128(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)准教授 飯山 将晃, 教授 西野 恒, 教授 中村 裕一, 教授 美濃 導彦(京都大学 名誉教授) / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
4

Matricial approaches for spatio-temporal control of light in multiple scattering media / Approches matricielles pour le contrôle spatio-temporel de la lumière dans des milieux de diffusion multiples

Mounaix, Mickaël 08 November 2017 (has links)
L’imagerie optique à travers des milieux diffusants, comme des milieux biologiques ou de la peinture blanche, reste un challenge car l’information spatiale portée par la lumière incidente est mélangée par les évènements multiples de diffusion. Toutefois, les modulateurs spatiaux de lumière (SLM) disposent de millions de degrés de liberté pour contrôler le profil spatial de la lumière en sortie du milieu, en forme de tavelure (speckle), avec des techniques de modulation du front d’onde. Cependant, si le laser génère une impulsion brève, le signal transmis s’allonge temporellement, car le milieu diffusant répond différemment pour les diverses composantes spectrales de l’impulsion. Nous avons développé, au cours de cette thèse, des méthodes de contrôle du profil spatiotemporel d’une impulsion brève transmise à travers un milieu diffusant. En mesurant la Matrice de Transmission Multi-Spectrale ou Résolue-Temporellement, la propagation de l’impulsion peut être totalement décrite dans le domaine spectral ou temporel. Avec des techniques de manipulation du front d’onde, les degrés de libertés spectraux/temporel peuvent être ajustés avec un unique SLM via la diversité spectrale du milieu diffusant. Nous avons démontré, de manière déterministe, la focalisation spatio-temporelle d’une impulsion brève après propagation dans un milieu diffusant, avec une compression temporelle proche de la durée initiale de l’impulsion, à différentes positions de l’espace-temps. Nous avons également démontré un façonnage contrôlé du profil temporel de l’impulsion, notamment avec la génération d’impulsions doubles. Nous exploitons cette focalisation spatio-temporelle pour exciter un processus optique non-linéaire, la fluorescence à deux photons. Cette approche ouvre des perspectives intéressantes pour le contrôle cohérent, l’étude de l’interaction lumière-matière ainsi que l’imagerie multi-photonique. / Optical imaging through highly disordered media such as biological tissue or white paint remains a challenge as spatial information gets mixed because of multiple scattering. Nonetheless, spatial light modulators (SLM) offer millions of degrees of freedom to control the spatial speckle pattern at the output of a disordered medium with wavefront shaping techniques. However, if the laser generates a broadband ultrashort pulse, the transmitted signal becomes temporally broadened as the medium responds disparately for the different spectral components of the pulse. We have developed methods to control the spatio-temporal profile of the pulse at the output of a thick scattering medium. By measuring either the Multispectral or the Time- Resolved Transmission Matrix, we can fully describe the propagation of the broadband pulse either in the spectral or temporal domain. With wavefront shaping techniques, one can control both spatial and spectral/temporal degrees of freedom with a single SLM via the spectral diversity of the scattering medium. We have demonstrated deterministic spatio-temporal focusing of an ultrashort pulse of light after the medium, with a temporal compression almost to its initial time-width in different space-time position, as well as different temporal profile such as double pulses. We exploit this spatio-temporal focusing beam to enhance a non-linear process that is two-photon excitation. It opens interesting perspectives in coherent control, light-matter interactions and multiphotonic imaging.
5

Acousto-optic imaging : challenges of in vivo imaging / Imagerie acousto-optique des tissus biologiques épais : les défis de l'imagerie in vivo

Laudereau, Jean-Baptiste 21 October 2016 (has links)
Les tissus biologiques sont des milieux fortement diffusant pour la lumière. En conséquence, les techniques d'imagerie actuelles ne permettent pas d'obtenir un contraste optique en profondeur à moins d'user d'approches invasives. L'imagerie acousto-optique (AO) est une approche couplant lumière et ultrasons (US) qui utilise les US afin de localiser l'information optique en profondeur avec une résolution millimétrique. Couplée à un échographe commercial, cette technique pourrait apporter une information complémentaire permettant d'augmenter la spécificité des US. Grâce à une détection basée sur l'holographie photoréfractive, une plateforme multi-modale AO/US a pu être développée. Dans ce manuscrit, les premiers tests de faisabilité ex vivo sont détaillés en tant que premier jalon de l'imagerie clinique. Des métastases de mélanomes dans le foie ont par exemple été détectées alors que le contraste acoustique n'était pas significatif. En revanche, ces premiers résultats ont souligné deux obstacles majeurs à la mise en place d'applications cliniques.Le premier concerne la cadence d'imagerie de l'imagerie AO très limitée à cause des séquences US prenant jusqu'à plusieurs dizaines de secondes. Le second concerne le speckle qui se décorrèle en milieu vivant sur des temps inférieurs à 1 ms, trop rapide pour les cristaux photorefractif actuellement en palce. Dans ce manuscrit, je propose une nouvelle séquence US permettant d'augmenter la cadence d'imagerie d'un ordre de grandeur au moins ainsi qu'une détection alternative basée sur le creusement de trous spectraux dans des cristaux dopés avec des terres rares qui permet de s'affranchir de la décorrélation du speckle. / Biological tissues are very strong light-scattering media. As a consequence, current medical imaging devices do not allow deep optical imaging unless invasive techniques are used. Acousto-optic (AO) imaging is a light-ultrasound coupling technique that takes advantage of the ballistic propagation of ultrasound in biological tissues to access optical contrast with a millimeter resolution. Coupled to commercial ultrasound (US) scanners, it could add useful information to increase US specificity. Thanks to photorefractive crystals, a bimodal AO/US imaging setup based on wave-front adaptive holography was developed and recently showed promising ex vivo results. In this thesis, the very first ones of them are described such as melanoma metastases in liver samples that were detected through AO imaging despite acoustical contrast was not significant. These results highlighted two major difficulties regarding in vivo imaging that have to be addressed before any clinical applications can be thought of.The first one concerns current AO sequences that take several tens of seconds to form an image, far too slow for clinical imaging. The second issue concerns in vivo speckle decorrelation that occurs over less than 1 ms, too fast for photorefractive crystals. In this thesis, I present a new US sequence that allows increasing the framerate of at least one order of magnitude and an alternative light detection scheme based on spectral holeburning in rare-earth doped crystals that allows overcoming speckle decorrelation as first steps toward in vivo imaging.
6

Quantum walks of photons in disordered media / Marches aléatoires quantiques dans les milieux désordonnés

Defienne, Hugo 02 December 2015 (has links)
Nous nous ici intéressons à la propagation d'états non-classiques de la lumière à travers des milieux désordonnés, comme les couches de peinture ou les fibres multimodes. Ces milieux sont généralement considérés comme des obstacles à la propagation de la lumière: par exemple, la diffusion de la lumière dans les tissus biologiques diminue considérablement les capacités des systèmes d'imagerie optique. C'est donc un phénomène duquel on souhaite généralement s'affranchir. Au contraire, dans notre étude nous exploitons ce désordre et utilisons ces milieux comme des "mélangeurs" de lumière. La lumière qui y pénètre est fortement diffusée et ses propriétés spectrales, spatiales et de polarisation sont complètement redistribuées. Cette redistribution est associée à un phénomène de propagation d'onde et d'interférence complexe qui est donc déterministe. Nous pouvons alors utiliser des méthodes de manipulation de front d'onde pour étudier ou contrôler ce mélange. Associés à des états non-classiques, ces systèmes permettent de réaliser des marches aléatoires quantiques dans des environnements bien plus complexes que ceux qui existent actuellement. Les méthodes de contrôle de front d'onde nous ont permis d'étudier et de manipuler ces marches aléatoires. Nous avons notamment montré qu'il est possible de guider les photons en manipulant les interférences classiques et quantiques. Ce travail nous a permis d'étudier de nouveaux aspects de la physique des milieux complexes, mais aussi d'explorer un nouveau type de plateformes pour marches aléatoires quantiques qui pourraient jouer un rôle important dans le développement des nouvelles applications pour traitement de l'information. / Light is not only an ideal medium to transmit information, but also a very interesting physical system to process it. In this respect, quantum optics has recently emerged as a highly promising domain for the development of new computing applications that can surpass the performances of currently available systems. In this respect, quantum walk of photons has recently emerged as a very powerful model for quantum information science, and integrated photonic devices have proven a versatile architecture for their implementation. While these waveguide structures allow only near-neighbor coupling between up to a few tens of modes, complex linear systems, such as white paint layer or multimode fiber, enable to couple efficiently a huge numbers of optical modes. Unstable and lossy, these systems have always been considered unpractical for quantum optics experiments. Wavefront shaping methods, developed in the last decade to control light propagating in complex media, allow moving beyond these limitations and make them exploitable with non-classical light. In our work, we demonstrate the implementation of quantum walks in a layer of paint and a multimode fiber using single-photons and photon-pairs. For this purpose, we extend wavefront shaping methods, originally developed to control classical light propagation in complex media, to non-classical light. This capability to manipulate photons allows building new controllable highly multimode optical platforms. Such systems pave the way for the next generation of quantum information processing devices.
7

Application of a Multimodal Polarimetric Imager to Study the Polarimetric Response of Scattering Media and Microstructures / Application d'un imageur polarimétrique multimodal pour l'étude de la réponse optique de milieux et de microstructures diffusantes

Yoo, Thomas 10 December 2018 (has links)
Les travaux réalisés au cours cette thèse ont eu comme objectif l’étude de l’interaction de la lumière polarisée avec des milieux et des particules diffusants. Ces travaux s’inscrivent dans un contexte collaboratif fort entre le LPICM et différents laboratoires privés et publics. Des aspects très variées ont été traités en profondeur dont le développement instrumental, la simulation numérique avancée et la création de protocoles de mesure pour l’interprétation de donnés à caractère complexe.La partie instrumentale de la thèse a été consacrée au développement d’un instrument novateur, adapté à la prise d’images polarimétriques à différents échelles (du millimètre au micron) pouvant être rapidement reconfigurable pour offrir différents modes d’imagerie du même échantillon. Les deux aspects principaux qui caractérisent l’instrument sont i) la possibilité d’obtenir des images polarimétriques réelles de l’échantillon et des images de la distribution angulaire de lumière diffusé par une zone sur l’échantillon dont sa taille et position peuvent être sélectionnée par l’utilisateur à volonté, ii) le contrôle total de l’état de polarisation, de la taille et de la divergence des faisceaux utilisés pour l’éclairage de l’échantillon et pour la réalisation des images de celui-ci. Ces deux aspects ne se trouvent réunis sur aucun autre appareil commercial ou expérimental actuel.Le premier objet d’étude en utilisant le polarimètre imageur multimodal a été l’étude de l’effet de l’épaisseur d’un milieu diffusant sur sa réponse optique. En imagerie médicale il existe un large consensus sur les avantages de l’utilisation de différentes propriétés polarimétriques pour améliorer l’efficacité de techniques optiques de dépistage de différentes maladies. En dépit de ces avantages, l’interprétation des observables polarimétriques en termes de propriétés physiologiques des tissus se trouve souvent obscurcie par l’influence de l’épaisseur, souvent inconnue, de l’échantillon étudié.L’objectif des travaux a été donc, de mieux comprendre la dépendance des propriétés polarimétriques de différents matériaux diffusants avec l’épaisseur de ceux-ci. En conclusion, il a été possible de montrer que, de manière assez universelle, les propriétés polarimétriques des milieux diffusants varient proportionnellement au chemin optique que la lumière a parcouru à l’intérieur du milieu, tandis que le dégrée de polarisation dépend quadratiquement de ce chemin. Cette découverte a pu être ensuite utilisée pour élaborer une méthode d’analyse de données qui permet de s’affranchir de l’effet des variations d’épaisseur des tissus, rendant ainsi les mesures très robustes et liées uniquement aux propriétés intrinsèques des échantillons étudiés.Un deuxième objet d’étude a été la réponse polarimétrique de particules de taille micrométrique. La sélection des particules étudiées par analogie à la taille des cellules qui forment les tissus biologiques et qui sont responsables de la dispersion de la lumière. Grâce à des mesures polarimétriques, il a été découvert que lorsque les microparticules sont éclairées avec une incidence oblique par rapport à l’axe optique du microscope, celles-ci semblent se comporter comme si elles étaient optiquement actives. D’ailleurs, il a été trouvé que la valeur de cette activité optique apparente dépend de la forme des particules étudiées. L’explication de ce phénomène est basée sur l’apparition d’une phase topologique dans le faisceau de lumière. Cette phase topologique dépend du parcours de la lumière diffusée à l’intérieur du microscope. L’observation inédite de cette phase topologique a été possible grâce au fait que l’imageur polarimétrique multimodale permet un éclairage des échantillons à l’incidence oblique. Cette découverte peut améliorer significativement l’efficacité de méthodes optiques pour la détermination de la forme de micro-objets. / The work carried out during this thesis was aimed to study the interaction of polarized light from the scattering media and particles. This work is part of a strong collaborative context between the LPICM and various private and public laboratories. A wide variety of aspects have been treated deeply, including instrumental development, advanced numerical simulation and the creation of measurement protocols for the interpretation of complex data.The instrumental part of the thesis was devoted to the development of an innovative instrument, suitable for taking polarimetric images at different scales (from millimeters to microns) that can be quickly reconfigured to offer different imaging modes of the same sample. The two main aspects that characterize the instrument are i) the possibility of obtaining real polarimetric images of the sample and the angular distribution of light scattered by an illuminated zone whose size and position can be controlled, ii) the total control of the polarization state, size and divergence of the beams. These two aspects are not united on any other commercial or experimental apparatus today.The first object of the study using the multimodal imaging polarimeter was to study the effect of the thickness from a scattering medium on its optical response. In medical imaging, there is a broad consensus on the benefits of using different polarimetric properties to improve the effectiveness of optical screening techniques for different diseases. Despite these advantages, the interpretation of the polarimetric responses in terms of the physiological properties of tissues has been obscured by the influence of the unknown thickness of the sample.The objective of the work was, therefore, to better understand the dependence of the polarimetric properties of different scattering materials with the known thickness. In conclusion, it is possible to show that the polarimetric properties of the scattering media vary proportionally with the optical path that the light has traveled inside the medium, whereas the degree of polarization depends quadratically on the optical path. This discovery could be used to develop a method of data analysis that overcomes the effect of thickness variations, thus making the measurements very robust and related only to the intrinsic properties of the samples studied.The second object of study was to study the polarimetric responses from particles of micrometric size. The selection of the particles studied by analogy to the size of the cells that form the biological tissues, and which are responsible for the dispersion of light. By means of the polarimetric measurements, it has been discovered that when the microparticles are illuminated with an oblique incidence with respect to the optical axis of the microscope, they appear to behave as if they were optically active. Moreover, it has been found that the value of this apparent optical activity depends on the shape of the particles. The explanation of this phenomenon is based on the appearance of a topological phase of the beam. This topological phase depends on the path of the light scattered inside the microscope. The unprecedented observation of this topological phase has been done by the fact that the multimodal polarimetric imager allows illumination of the samples at the oblique incidence. This discovery can significantly improve the efficiency of optical methods for determining the shape of micro-objects.
8

Time-gated diffuse optical spectroscopy: experiments on layered media

McMaster, Carter Benjamin 26 July 2022 (has links)
No description available.
9

Imagerie sélective des tissus biologiques : apport de la polarisation pour une sélection en profondeur

Rehn, Simon 21 December 2012 (has links)
Les techniques d'imagerie optique, dans la gamme de longueurs d'onde visible et proche infrarouge, permettent d'examiner très facilement les tissus biologiques de manière non invasive. Toutefois la forte diffusion des tissus biologiques limite fortement leur examen en profondeur. Examinés en rétrodiffusion (examen de la peau ou du col de l'uterus par exemple), non seulement les mesures sont polluées par la réflexion spéculaire, mais l'information sur la source volumique du signal est également perdue du fait de la forte diffusion. La prise en compte de la diffusion dans le modèle de propagation de la lumière permet d'évaluer cette distribution volumique du signal lumineux en fonction des propriétés optiques du milieu. Pour sophistiquer l'approche, nous introduisons un filtrage polarimétrique, basé sur l'utilisation de la lumière polarisée elliptiquement, particulièrement approprié à la géométrie de rétrodiffusion, permettant avant tout un sondage sélectif en profondeur tout en s'affranchissant de la réflexion spéculaire. Cette technique permet ainsi d'examiner les tissus à l'échelle mésoscopique (jusqu'à l'échelle du millimètre). / Optical imaging techniques using the visible and near-infrared wavelengths allow an easy and non-invasive way of analysing biological tissues. However, the high scattering of biological tissues significantly limits the depth of examination. Backscattering examination (of skin or of the cervix for example) shows not only that the measurements are polluted by mirror reflection, but also that information about the source of the signal is lost as a result of the high scattering. Including scattering in the light propagation model allows the evaluation of the volume distribution of the light signal as a function of the optical properties of the medium. In order to make the approach more sophisticated, we introduced a polarimetric filtering that uses elliptically polarised light. This is not only particularly appropriate for backscattering geometry, but also allows firstly to probe at selected depths and secondly to eliminate mirror reflection. Thus, this technique allows the examination of tissues at a mesoscopic scale (up to the milimeter scale).
10

Caractérisation des matériaux complexes et de leurs endommagements par la technique de la coda ultrasonore alliée à l'acoustique non linéaire / Non destructive characterization of complex materials and their damages by ultrasonic coda technique combined with non linear acoustics

Toumi, Souad 15 June 2017 (has links)
Nous nous intéressons, dans cette étude, à la caractérisation d'un défaut en développe une méthode ultrasonore basée sur la diffusion multiple des ondes. Pour cela, nous avons utilisé un béton base polymère endommagé par un essai de flexion en trois points. La technique d’'Interférométrie par Onde de Coda (CWI) prend en compte les ondes issues de la diffusion multiple et qui parcourent de ce fait une distance très grande devant celle séparant la source et du récepteur. Cette technique montre la sensibilité de la coda quand le matériau est soumis en résonance non linéaire où l’ influence des conditions de l’ environnement est considéré comme limité par l’ utilisation d’ un signal différent de référence. Les résultats expérimentaux ont montré que l’ efficacité de la méthode dépend du plan de vibrations considérées. Dans le but d'étudier l’ anisotropie d’ un défaut créé dans un béton base polymère nous avons utilisé les données de l’'Emission Acoustique (EA) récoltées au cours d’ essais acoustiques en Résonance Non Linéaire pour les deux plans. L’ existence d'une différence entre les signaux enregistrés au cours de mesures de l’ EA montrent que nous produisons différents micro-mécanismes dont la présence et / ou l'absence ont un impact important important sur l'interaction entre l'onde ultrasonore et le défaut. / Nonlinear Resonance (NR) and Coda Wave Interferometry (CWI) have proved to be efficient to detect and follow the evolution of micro-cracks within a strongly scattering media (concrete, rocks, etc.). Nevertheless, the localization of the cracks using the same techniques is not straight forward. In order to avoid the conditioning and its subsequent relaxation effect related to NR, CWI is simultaneously applied when concrete samples are vibrating in the linear regime. Based on a comparative study of the coda signals contents (non ballistic part) in the absence and under the weak linear vibration, the localization of the mechanically induced scatterers was possible depending on the scatterers' main direction with respect to the vibration plane. The latter point raises the issue of the generated types of vibration at the scatterers. Therefore, investigations were performed using the Acoustic Emission (AE) technique, which has served to verify that the acoustic activity during the linear vibrations does change depending on the considered experimental configuration. The latter, has also a direct effect on the frequency content of the recorded AE hits showing the potential link existing between the quantitative analysis of AE hits and the generated vibration mechanisms of the existing micro-cracks.

Page generated in 0.4974 seconds