Return to search

Requirement analysis framework of naval military system for expeditionary warfare

Military systems are getting more complex due to the demands of various types of missions, rapidly evolving technologies, and budgetary constraints. In order to support complex military systems, there is a need to develop a new naval logistic asset that can respond to global missions effectively. This development is based on the requirement which must be satisfice-able within the budgetary constraints, address pressing real world needs, and allow designers to innovate. This research is conducted to produce feasible and viable requirements for naval logistic assets in complex military systems. The process to find these requirements has diverse uncertainties about logistics, environment and missions. To understand and address these uncertainties, this research includes instability analysis, operational analysis, sea state analysis and disembarkation analysis. By the adaptive Monte-Carlo simulation with maximum entropy, uncertainties are considered with corresponding probabilistic distribution. From Monte-Carlo simulation, the concept of Probabilistic Logistic Utility (PLU) was created as a measure of logistic ability. To demonstrate the usability of this research, this procedure is applied to a Medium Exploratory Connector (MEC) which is an Office of Naval Research (ONR) innovative naval prototype. Finally, the preliminary design and multi-criteria decision-making method become capable of including requirements considering uncertainties.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/50403
Date13 January 2014
CreatorsLee, Hyun Seop
ContributorsMavris, Dimitri N., Systems engineering
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.002 seconds