The conflict between HIV-1 and the host immune system plays out over a time-scale of months and years, and on a grander scale in the co-evolution of lentiviruses and the immune systems of their host species. Directed evolution of HIV-1 entry inhibitors using controlled randomization together with a display system offers a means of recapitulating one side of this conflict in vitro on an accelerated time-scale. To address limitations in existing display systems, we constructed a vector (pDQ1) integrating phage-display and mammalian-expression systems. This vector displays on phage when expressed in bacteria, and as an Fc-fusion when expressed in tissue culture, thus accelerating the iterative process of randomization, display, and characterization. We demonstrated the utility of this vector in the evolution of a CD4-mimetic peptide.
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11745713 |
Date | 25 February 2014 |
Creators | Quinlan, Brian Donald |
Contributors | Farzan, Michael |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0022 seconds