Une nouvelle méthodologie fondée sur l’interfaçage de la géochimie et de la biologie a été utilisée pour étudier la durabilité d’un système d’agriculture irriguée face aux changements globaux (climat et urbanisation). L’étude de sa durabilité nécessite une vision dynamique spatio-temporelle de l’évolution d’un agrosystème irrigué, ici le système « irrigation – prairie (plante) – sol – nappe ». Pour cela, deux démarches sont utilisées : l’étude de terrain et la modélisation. L’étude de terrain comprend des suivis temporels et spatiaux de la qualité des eaux de surface, de la nappe phréatique et de la qualité du foin des prairies. La modélisation consiste en un modèle biogéochimique prenant en compte l’ensemble des compartiments réactionnels du système. Le fil directeur est constitué par les mécanismes d’acquisition de la composition chimique de l’eau lors de son transfert dans le sol depuis eau d’irrigation jusqu’à l’eau de nappe. Ces mécanismes sont étudiés du double point de vue de leurs bilans géochimiques et des réactions sol / solution. L’acquisition de données porte ainsi sur : (1) la composition chimique des eaux d’irrigation et des eaux souterraines de la nappe ; (2) la minéralogie des sols ; (3) la nature des engrais apporté ; (4) la quantité des éléments chimiques prélevés et exportés par les plantes. Le modèle biogéochimique consiste à interfacer le modèle de culture STICS et le modèle de géochimie PHREEQC. Ce modèle est capable de rendre compte de l’évolution des eaux lors de leur parcours dans le sol et de mettre en évidence les processus majeurs qui déterminent la qualité de l’eau ; en sortie, il permet d’établir des indicateurs géochimiques pertinents pour la gestion du système. Cette méthode est appliquée aux prairies irriguées en la Crau, au Sud de France. Le système d’irrigation gravitaire par les eaux de la Durance depuis le 16e siècle sur la Crau a construit un système agricole durable en amenant des alluvions sur les terres irriguées, sur lequel poussent les prairies (le foin de Crau (AOP)). De plus cette irrigation participe à plus de 70% au renouvellement des eaux de la nappe phréatique. L’analyse des données sur une longue durée (1960-2013), l’acquisition de données récentes et la modélisation montrent l’originalité et la durabilité de cet agrosystème irrigué et sa résilience face à une augmentation de température de 2°C, tant en ce qui concerne les rendements que la qualité du foin. Cependant dans la perspective des changements globaux, les prévisions tablent sur une disponibilité en eau pour l’irrigation en diminution, de plus des changements d’occupation du sol (10% de la surface totale), avec une réduction des prairies irriguées. Ceci risque de remettre en cause la durabilité de l’agrosystème irrigué et partant l’approvisionnement en eau à partir de la nappe de toute l’économie locale (300 000 habitants, les industries lourdes du site de Fos-sur-Mer). / A new methodology based on geochemistry and biology interfacing to study the sustainability of an irrigated agriculture system in the face of global changes (climate and urban sprawl). It requires construction of a spatio-temporal view of the ”irrigation - meadow (plant) - soil - groundwater” system evolution. Thereby two approaches are used : the field study and the modeling. The field study includes temporal and spatial survey of waters quality, plant quality and used fertilizers. The modeling consists of a biogeochemical model taking into account all the factors reaction of the system. The main theme is the mechanisms of acquiring the chemical composition of water during its transfer the soil horizon from irrigation water to groundwater. These mechanisms are studied from the double point of view of their geochemical balances and soil / solution reactions. The data acquisition thus relates to : (1) the chemical composition of irrigation water and groundwater ; (2) the soil mineralogy ; (3) the nature of the provided fertilizer ; (4) quantity of chemical elements uptaken by plants. The biogeochemical model consists in interfacing the crop model (STICS) and the geochemical model (PHREEQC). This model is able to perform the chemical evolution of waters during their pathway in the soil and to highlight the major processes that determine the water quality ; in output, it makes it possible to establish geochemical indicators relevant to the system management. The Crau is chosen as a demo area, South France, its grassland production is based on surface irrigation via channels withdrawn from the Durance River. Irrigation water is rich in minerals and trace elements thanks to alluvium brought, on which produce high quality hay that is regulated under appellation control since 1997. Additionally, this irrigation recharge the aquifer by 70% But it is threatened by global changes, which ultimately risks to compromising the sustainability of the irrigated grassland system. Data analysis over a long term (1960-2013), the acquisition of recent data and modeling show the originality and durability of this irrigated agrosystem and Its resilience to an increase in temperature by about 2°C, both in terms of yields and hay quality. However, according to future scenarios, declining of irrigation water is forecasted, and changes in land use by 10% of the total area, with a reduction in irrigated grassland areas. This may jeopardize the sustainability of the the irrigated agrosystem and thus the water supply for local use (300 000 inhabitants, the heavy industries of the Fos-sur-Mer site).
Identifer | oai:union.ndltd.org:theses.fr/2017AVIG0691 |
Date | 07 March 2017 |
Creators | Mohammed, Gihan |
Contributors | Avignon, Trolard, Fabienne, Gillon, Marina |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds