Return to search

Immersion freezing experiments of biological, mineral dust and dust-bio-mixed particles with the Leipzig Aerosol Cloud Interaction Simulator

Eiskristalle fördern die Bildung von Niederschlag und beeinflussen die optischen
Eigenschaften einer Wolke. Damit spielen sie eine maßgebliche Rolle für das Wetter und Klima unseres Planeten. In der Atmosphäre entstehen Eiskristalle entweder durch homogene oder durch heterogene Eisnukleation. Letzteres wird durch ein sogenanntes eisnukleierendes Partikel (INP) katalysiert. Bisher ist nur wenig über die speziellen Eigenschaften eines INP bekannt und die Vorhersagbarkeit über die Eisnukleationsfähigkeit verschiedener Materialien
ist somit stark limitiert. Im Rahmen dieser Arbeit wurde das Immersionsgefrierverhalten von Birkenpollen, verschiedenen Mineralstäuben sowie Mischungen aus Mineralstaub und Birkenpollen Material untersucht. Ziel dieser Untersuchungen war, das Gefrierverhalten der verschiedenen Substanzen zu quantifizieren sowie deren Bedeutung für die Atmopshärische
Eisnukleation besser zu verstehen. Das Gefrierverhalten eisaktiver Birkenpollen Makromoleküle konnte in dieser Arbeit erstmals unter atmosphärisch relevanten Bedingungen quantifiziert werden. Ein Vergleich zweier Birkenpollen Proben mit unterschiedlicher Herkunft demonstrierte die Abhängigkeit der Gefriereigenschaften der Birkenpollen von der geografischen
Breite. Es wurden zwei unterschiedlich eisaktive Makromoleküle identifiziert, welche
beide bei Temperaturen oberhalb −20°C aktiv sind. Das Gefrierverhalten unterschiedlicher Mineralstaubpartikel wurde hinsichtlich ihres K-Feldspat Anteils verglichen. Dabei zeigte sich, dass der K-Feldspat Anteil das Gefrierverhalten der Mineralstaubpartikel kontrolliert. Außerdem konnte gezeigt werden, dass eine Beschichtung mit Schwefelsäure die Eiskeimfähigkeit von K-Feldspat stark herabsetzt. In der Atmosphäre sind Partikel, welche sowohl aus
mineralischen als auch aus biologischen Komponenten bestehen sehr wahrscheinlich. Um zu demonstrieren wie sich ein Mineralstaubpartikel verhält, wenn es mit biologischem Material gemischt wird, wurde in dieser Arbeit das Gefrierverhalten von Mischpartikeln bestehend aus Illit-NX und Birkenpollen Material untersucht. Es konnte gezeigt werden, dass die eisaktiven
Makromoleküle der Birkenpolle ihre Eisaktivität beibehalten, auch wenn sie an einem Illit- NX Partikel angelagert sind. Die Mischpartikel zeigen somit das selbe Gefrierverhalten, wie reine Birkenpollen Partikel. Dies zeigt die bisher unterschätzte Bedeutung von biologischem Material für die atmosphärische Eisnukleation. / It is known that ice crystals in clouds play an important role for climate and
weather as they influence precipitation initiation and radiative forcing. Ice formation in clouds occurs either through homogeneous or heterogeneous ice nucleation. For the latter case an ice nucleating particle (INP) catalyzes the freezing process. The knowledge about the properties which make a particle act as efficient INP is still limited. As a consequence, the ice nucleation ability of different materials has to be examined by quantitative experimentation. In the framework of the present thesis, the immersion freezing behavior of birch pollen material, different mineral dust particles and internal mixtures of mineral dust and birch pollen material was studied to improve our understanding of the importance of these species for the atmospheric ice nucleation. A quantification of the freezing behavior of ice nucleating active (INA) birch pollen macromolecules under atmospherically relevant conditions was done for the first time. Furthermore, the freezing ability of two birch pollen samples with different local origin was compared. It could be shown that birch pollen are able to produce at least two different types of INA macromolecules, which are both ice active in a temperature regime above −20◦ C. It became obvious that one of the macromolecules is favorably produced in higher latitudes, which indicated the dependence of the freezing properties of birch pollen
from their local origin. Concerning mineral dust particles the present thesis demonstrated that the freezing ability of different K-feldspar containing mineral dust proxys like Arizona test dust, kaolinite and illite-NX, is controlled by their K-feldspar content. Furthermore, it was shown that K-feldspar loses its good freezing ability after surface modification with sulfuric acid. As internal mixtures of mineral and biological components are very likely in the atmosphere, the freezing ability of such mixed particles has been investigated in the present thesis. For illite-NX particles which were mixed with birch pollen material, it could be shown
that the birch pollen macromolecules maintain their freezing ability when being adsorbed to a mineral dust particle. As a result, the affected mineral dust particle initiates freezing exactly like a birch pollen particle. For atmospheric application this means that it is likely that the ascription of mineral dust to the atmospheric INPs is, at least to a certain extent, due to unnoticed attached ice nucleating biological material.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:16880
Date13 December 2017
CreatorsBauditz, Stefanie
ContributorsUniversität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds