Fractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics. In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done and we investigate when they coincide. With these tools different fractals are studied and compared. A key idea in this thesis has been to sum up different names and definitions referring to similar concepts.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-7320 |
Date | January 2006 |
Creators | Leifsson, Patrik |
Publisher | Linköpings universitet, Matematiska institutionen, Matematiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds