Return to search

Séquencement d’une ligne de montage multi-modèles : application à l’industrie du véhicule industriel / Mixed model assembly line sequencing : application in truck industry

Dans cette thèse, nous considérons le problème du séquencement sur une ligne de montage multi-modèles de véhicules industriels. Pour équilibrer au mieux la charge dynamique des opérateurs, la minimisation de la somme des retards à l’issue de chaque véhicule est proposée.Deux approches peuvent être utilisées pour optimiser le lissage de charge dans un problème de séquencement : l’utilisation directe des temps opératoires ou le respect de règles. La plupart des travaux appliqués à l’industrie automobile utilisent l’approche de respect de règles. Une originalité de ce travail est d’utiliser l’approche de la prise en compte directe des temps opératoires.L’étude de la littérature de ce problème a dévoilé deux lacunes dans les travaux précédents : l’essentiel des travaux modélisent un seul type d’opérateurs d’une part, et proposent des heuristiques ou des métaheuristiques pour résoudre ces problèmes, d’autre part. L’originalité de ce travail est de tester des méthodes exactes pour des instances industrielles et de modéliser le fonctionnement de trois différents types d’opérateurs spécifiques au cas industriel.Deux méthodes exactes sont développées : la programmation linéaire mixte et la programmation dynamique. Une étude expérimentale des facteurs de complexité sur des instances académiques des deux modèles est développée. Les modèles sont aussi testés sur des instances du cas d’étude.Par ailleurs, le problème est traité par deux méthodes approchées : une heuristique basée sur la programmation dynamique d’une part, et des métaheuristiques (algorithme génétique, recuit simulé et un couplage des deux) d’autre part. Les deux approches sont testées sur des instances académiques et des instances du cas d’étude.Ce travail a permis d’apporter une solution intéressante d’un point de vue industriel puisqu’il prend en compte les caractéristiques de la ligne de montage (opérateurs spécifiques) et améliore significativement la qualité du séquencement en un temps de calcul raisonnable. / In this thesis, the problem of sequencing mixed model assembly lines (MMAL) is considered. Our goal is to determine the sequence of products to minimize the work overload. This problem is known as the mixed model assembly line sequencing problem with work overload minimization (MMSP-W). This work is based on an industrial case study of a truck assembly line.Two approaches can be used to minimize the work overload: the use of task operation times or the respect of sequencing rules. Most of the earlier works applied in car industry use the latter approach. The originality of this work is to employ the task operation times for the generation of the product sequence in a MMAL.The literature review has highlighted two main gaps in previous works: most of the papers consider a single type of operators, and propose heuristics or metaheuristics to solve the problem. The originality of this work is to test exact methods for industrial case instances and to model three different types of operators.Two exact methods are developed: the mixed integer linear programming and dynamic programming. The models are tested on industrial case study instances. An experimental study is developed for both approaches in order to understand the complexity factors.Moreover, the problem is treated by two approximate methods: a heuristic based on dynamic programming and metaheuristics (genetic algorithm, simulated annealing and a hybrid method based on both genetic algorithm and simulated annealing). All approaches are tested on academic instances and on real data from the industrial case study.

Identiferoai:union.ndltd.org:theses.fr/2015GREAI029
Date27 May 2015
CreatorsAroui, Karim
ContributorsGrenoble Alpes, Frein, Yannick, Alpan, Gülgün
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds