Return to search

A Bayesian Finite Mixture Model for Network-Telecommunication Data

A data modeling procedure called Mixture model, is introduced beneficial to the characteristics of our data. Mixture models have been proved flexible and easy to use, a situation which can be confirmed from the majority of papers and books which have been published the last twenty years. The models are estimated using a Bayesian inference through an efficient Markov Chain Monte Carlo (MCMC) algorithm, known as Gibbs Sampling. The focus of the paper is on models for network-telecommunication lab data (not time dependent data) and on the valid predictions we can accomplish. We categorize our variables (based on their distribution) in three cases, a mixture of Normal distributions with known allocation, a mixture of Negative Binomial Distributions with known allocations and a mixture of Normal distributions with unknown allocation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-146039
Date January 2016
CreatorsManikas, Vasileios
PublisherStockholms universitet, Statistiska institutionen
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds