Return to search

Caractérisation du rôle et du mode d'action de MLF au cours de l'hématopoïèse chez la drosophile / Caracterisation of the role and mode of action of MLF during Drosophila hematopoiesis

L'hématopoïèse est le processus développemental qui permet la formation des cellules qui composent le sang. Au niveau moléculaire, de nombreux facteurs de transcription permettent une régulation fine de ce processus et la dérégulation de leur activité, en affectant la différenciation ou la prolifération des cellules sanguines, peut conduire à l'apparition d'hémopathies telles que les leucémies. De manière intéressante, de nombreux gènes contrôlant l'hématopoïèse sont conservés entre la Drosophile et l'homme. Ces dernières années, cet insecte a donc émergé en tant que modèle pour l'étude du développement normal et pathologique des cellules hématopoïétiques. En tirant profit de cette conservation, mon travail de thèse a visé à caractériser, chez la Drosophile, le rôle et le mode d'action des protéines de la famille " Myeloid Leukemia Factor " (MLF). En effet, bien que le membre fondateur de cette famille soit impliqué dans le développement de Leucémies Aigües Myéloïdes chez l'homme, ces protéines restent très peu caractérisés. Les travaux réalisés dans l'équipe montrent que MLF contrôle l'homéostasie du système sanguin de la Drosophile, et qu'un aspect conservé de la fonction des protéines MLF est de réguler l'activité de facteurs de transcription de type RUNX dont Lozenge (LZ). Dans ce contexte, j'ai cherché à déterminer plus précisément la fonction de MLF dans l'hématopoïèse et à comprendre comment MLF régule les facteurs RUNX. In vivo, j'ai montré que MLF contrôle non seulement le nombre de cellules sanguines RUNX+/LZ+ mais aussi leur différenciation en "cellules à cristaux". L'établissement par RNAseq du transcriptome de ces cellules en contexte sauvage ou mutant pour mlf m'a permis d'identifier de nouveaux marqueurs de ce lignage et de montrer que mlf régule l'expression de nombre d'entre eux. De plus j'ai mis en évidence que ces deux aspects de la fonction de mlf passent par la régulation de LZ. Ainsi, bien que lz soit nécessaire au développement des cellules à cristaux, une diminution de son expression s'accompagne d'une augmentation du nombre de ces cellules qui présentent alors des caractéristiques " hyper-différenciées " et une sur-activation de la voie de signalisation Notch. Ces données mettent en exergue l'importance de la régulation du niveau du facteur RUNX LZ par MLF au cours de l'hématopoïèse. D'autre part, en utilisant une lignée de cellules sanguines de Drosophile en culture (cellules Kc167), j'ai pu montrer que MLF régule post-traductionnellement le niveau de LZ et que MLF et LZ interagissent physiquement. Pour ouvrir de nouvelles pistes quant aux mécanismes moléculaires d'action de MLF, j'ai également cherché ses partenaires par spectrométrie de masse. J'ai ainsi identifié la protéine chaperonne DNAJ1/HSP40 et j'ai pu mettre en évidence que ce partenaire de MLF est aussi impliqué dans la régulation de l'activité et du niveau d'expression de LZ en culture cellulaire. J'ai ensuite généré un mutant de ce gène chez la Drosophile par CRISPR et j'ai pu montrer qu'il contrôle lui aussi le développement des cellules sanguines LZ+, probablement en interaction avec MLF. Mes résultats suggèrent donc que MLF pourrait faire partie d'un complexe chaperon impliqué dans le contrôle de l'activité de LZ et dans l'hématopoïèse. / Haematopoiesis is the developmental process responsible for the formation of all blood cell types. At the molecular level, many transcription factors allow tight regulation of this process and deregulation of their activity, by affecting blood cell proliferation or differentiation, can lead to the appearance of various diseases including leukaemia. Interestingly, many genes implicated in haematopoiesis are conserved between Drosophila and human. Consequently, this insect has emerged as a potent model to study normal and pathological blood cell development. Taking advantage of this conservation, my thesis aimed at characterizing the role and mode of action of the "Myeloid Leukemia Factor" (MLF) family in Drosophila. Indeed, although the founding member of this family is involved in the development of Acute Myeloid Leukaemia in humans, this family remains poorly characterised. Previous work showed that MLF controls Drosophila blood cell homeostasis and that one conserved aspect of MLF function is to regulate the activity of RUNX transcription factor activity, including that of the Drosophila hematopoietic factor LOZENGE (LZ). Further to these results, I sought to determine more precisely MLF function in haematopoiesis and its molecular mechanism of action on RUNX factors. In vivo, I showed that mlf controls not only the number of LZ + blood cells but also their differentiation into "crystal cells. Notably, the establishment of wild type or mlf-/- LZ+ cells transcriptome by RNAseq allowed me to identify new markers for this lineage and revealed that mlf regulates the expression of a large number of them. Interestingly, I found that mlf controls both LZ+ cell number and their differentiation by regulating LZ level. Indeed, although lz is required for crystal cell development, a decrease in lz level is associated with increased LZ+ cell number and these cells exhibit "hyper-differentiated" phenotypes as well as Notch signalling pathway over-activation. These data underline the crucial role of RUNX level regulation by MLF for normal blood cell development. In parallel, using a Drosophila blood cell line (Kc167 cells), I showed that MLF physically interacts with LZ and post-translationally regulates its level. To open new leads concerning the molecular mode of action of MLF, I undertook a proteomic approach to identify its partners. Thereby, I found that the chaperon protein DNAJ1/HSP40 binds to MLF and I demonstrated that DNAJ1 is also implicated in the regulation of LZ level and activity in Kc cells. Using a CRISPR approach, I then generated a null dnaj1 allele in Drosophila and its phenotypic characterisation allowed me to show that DNAJ1 also controls the development of LZ+ blood cells, probably in interaction with MLF. All together, my results suggest that MLF could be part of a " chaperon " complex involved in controlling RUNX activity and haematopoiesis.

Identiferoai:union.ndltd.org:theses.fr/2015TOU30282
Date26 November 2015
CreatorsMiller, Marion
ContributorsToulouse 3, Waltzer, Lucas, Haenlin, Marc
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds