Dans cette thèse, on considère une chaîne de Markov $(X_i)$ à espace d'états continu que l'on suppose récurrente positive et stationnaire. L'objectif est d'estimer la densité de transition $\Pi$ définie par $\Pi(x,y)dy=P(X_{i+1}\in dy|X_i=x)$. On utilise la sélection de modèles pour construire des estimateurs adaptatifs. On se place dans le cadre minimax sur $L^2$ et l'on s'intéresse aux vitesses de convergence obtenues lorsque la densité de transition est supposée régulière. Le risque intégré de nos estimateurs est majoré grâce au contrôle de processus empiriques par une inégalité de concentration de Talagrand. Dans une première partie, on suppose que la chaîne est directement observée. Deux estimateurs différents sont présentés, l'un par quotient, l'autre minimisant un contraste moindres carrés et prenant également en compte l'anisotropie du problème. Dans une deuxième partie, on aborde le cas d'observations bruitées $Y_1,\dots, Y_{n+1}$ où $Y_i=X_i+\varepsilon_i$ avec $(\varepsilon_i)$ un bruit indépendant de la chaîne $(X_i)$. On généralise à ce cas les deux estimateurs précédents. Des simulations illustrent les performances des estimateurs.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00180107 |
Date | 01 October 2007 |
Creators | Lacour, Claire |
Publisher | Université René Descartes - Paris V |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds